The embedding problem for Markov matrices

Pub Date : 2020-05-02 DOI:10.5565/publmat6712308
M. Casanellas, J. Fern'andez-S'anchez, Jordi Roca-Lacostena
{"title":"The embedding problem for Markov matrices","authors":"M. Casanellas, J. Fern'andez-S'anchez, Jordi Roca-Lacostena","doi":"10.5565/publmat6712308","DOIUrl":null,"url":null,"abstract":"Characterizing whether a Markov process of discrete random variables has an homogeneous continuous-time realization is a hard problem. In practice, this problem reduces to deciding when a given Markov matrix can be written as the exponential of some rate matrix (a Markov generator). This is an old question known in the literature as the embedding problem (Elfving37), which has been only solved for matrices of size $2\\times 2$ or $3\\times 3$. In this paper, we address this problem and related questions and obtain results in two different lines. First, for matrices of any size, we give a bound on the number of Markov generators in terms of the spectrum of the Markov matrix. Based on this, we establish a criterion for deciding whether a generic Markov matrix (different eigenvalues) is embeddable and propose an algorithm that lists all its Markov generators. Then, motivated and inspired by recent results on substitution models of DNA, we focus in the $4\\times 4$ case and completely solve the embedding problem for any Markov matrix. The solution in this case is more concise as the embeddability is given in terms of a single condition.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6712308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Characterizing whether a Markov process of discrete random variables has an homogeneous continuous-time realization is a hard problem. In practice, this problem reduces to deciding when a given Markov matrix can be written as the exponential of some rate matrix (a Markov generator). This is an old question known in the literature as the embedding problem (Elfving37), which has been only solved for matrices of size $2\times 2$ or $3\times 3$. In this paper, we address this problem and related questions and obtain results in two different lines. First, for matrices of any size, we give a bound on the number of Markov generators in terms of the spectrum of the Markov matrix. Based on this, we establish a criterion for deciding whether a generic Markov matrix (different eigenvalues) is embeddable and propose an algorithm that lists all its Markov generators. Then, motivated and inspired by recent results on substitution models of DNA, we focus in the $4\times 4$ case and completely solve the embedding problem for any Markov matrix. The solution in this case is more concise as the embeddability is given in terms of a single condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
马尔可夫矩阵的嵌入问题
表征离散随机变量的马尔可夫过程是否具有齐次连续时间实现是一个难题。在实践中,这个问题被简化为决定一个给定的马尔可夫矩阵何时可以被写成某个速率矩阵(一个马尔可夫生成器)的指数。这是一个在文献中被称为嵌入问题(Elfving37)的老问题,它只解决了大小为$2\乘以2$或$3\乘以3$的矩阵。在本文中,我们解决了这个问题和相关问题,并在两个不同的线路上得到了结果。首先,对于任意大小的矩阵,我们根据马尔可夫矩阵的谱给出了马尔可夫生成器数目的一个界限。在此基础上,我们建立了判定一个泛型马尔可夫矩阵(不同特征值)是否可嵌入的准则,并提出了一种列出其所有马尔可夫生成器的算法。然后,受DNA替换模型的最新研究结果的启发,我们将重点放在$4\ × 4$的情况下,并完全解决了任何马尔可夫矩阵的嵌入问题。这种情况下的解决方案更简洁,因为可嵌入性是根据单个条件给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1