Investigation of the synergistic effect of red phosphorus and magnesium hydroxide on the thermal degradation behavior and flame resistance of the intumescent fire-retardant polypropylene system
Nhung Hac Thi, Truong Cong Doanh, Doan Tien Dat, Ho Thi Oanh, Ha Tran Nguyen, Tuyen Van Nguyen, Quang Vinh Tran, Mai Ha Hoang
{"title":"Investigation of the synergistic effect of red phosphorus and magnesium hydroxide on the thermal degradation behavior and flame resistance of the intumescent fire-retardant polypropylene system","authors":"Nhung Hac Thi, Truong Cong Doanh, Doan Tien Dat, Ho Thi Oanh, Ha Tran Nguyen, Tuyen Van Nguyen, Quang Vinh Tran, Mai Ha Hoang","doi":"10.1002/fam.3175","DOIUrl":null,"url":null,"abstract":"<p>High fire-resistance polypropylene (PP) composites were prepared by using environment-friendly flame retardants including expandable graphite (EG), red phosphorus (RP), and magnesium hydroxide (MH). Synergism between EG, RP, and MH on the thermo-oxidation behavior and flame resistance of PP was found. The incorporation of MH and RP formed highly thermally stable mixtures of magnesium phosphates consisting of Mg<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, Mg(PO<sub>3</sub>)<sub>2</sub>, and <i>α</i>-Mg<sub>2</sub>P<sub>2</sub>O<sub>7</sub> at both amorphous and crystalline phases in the burning process. The mixture not only covered the surface of burning materials but also could reinforce the char structure of the PP/EG composites, thereby significantly enhancing the condensed phase flame retardant mechanism of the composites. Mass ratios of the flame retardants were also optimized to obtain the composite with the highest flame retardant efficiency. The result revealed that the combination of EG, RP, and MH in PP at MH/RP mass ratio of 3/2 with only a total additive content of 18 wt.% could make its limiting oxygen index (LOI) increase from 16.8% to 27.2% and the UL-94 rating was improved from none to V-0. In addition, the mechanical properties of the composites were improved via the surface treatment of MH and RP with calcium stearate and silicone oil, respectively.</p>","PeriodicalId":12186,"journal":{"name":"Fire and Materials","volume":"48 2","pages":"166-179"},"PeriodicalIF":2.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire and Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fam.3175","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High fire-resistance polypropylene (PP) composites were prepared by using environment-friendly flame retardants including expandable graphite (EG), red phosphorus (RP), and magnesium hydroxide (MH). Synergism between EG, RP, and MH on the thermo-oxidation behavior and flame resistance of PP was found. The incorporation of MH and RP formed highly thermally stable mixtures of magnesium phosphates consisting of Mg3(PO4)2, Mg(PO3)2, and α-Mg2P2O7 at both amorphous and crystalline phases in the burning process. The mixture not only covered the surface of burning materials but also could reinforce the char structure of the PP/EG composites, thereby significantly enhancing the condensed phase flame retardant mechanism of the composites. Mass ratios of the flame retardants were also optimized to obtain the composite with the highest flame retardant efficiency. The result revealed that the combination of EG, RP, and MH in PP at MH/RP mass ratio of 3/2 with only a total additive content of 18 wt.% could make its limiting oxygen index (LOI) increase from 16.8% to 27.2% and the UL-94 rating was improved from none to V-0. In addition, the mechanical properties of the composites were improved via the surface treatment of MH and RP with calcium stearate and silicone oil, respectively.
期刊介绍:
Fire and Materials is an international journal for scientific and technological communications directed at the fire properties of materials and the products into which they are made. This covers all aspects of the polymer field and the end uses where polymers find application; the important developments in the fields of natural products - wood and cellulosics; non-polymeric materials - metals and ceramics; as well as the chemistry and industrial applications of fire retardant chemicals.
Contributions will be particularly welcomed on heat release; properties of combustion products - smoke opacity, toxicity and corrosivity; modelling and testing.