{"title":"Machine learning for the perception of autonomous construction machinery","authors":"N. Heide, J. Petereit","doi":"10.1515/auto-2022-0054","DOIUrl":null,"url":null,"abstract":"Abstract Robotic systems require holistic capabilities to sense, perceive, and act autonomously within their application environment. A safe and trustworthy autonomous operation is essential, especially in hazardous environments and critical applications like autonomous construction machinery for the decontamination of landfill sites. This article presents an enhanced combination of machine learning (ML) methods with classic artificial intelligence (AI) methods and customized validation methods to ensure highly reliable and accurate sensing and perception of the environment for autonomous construction machinery. The presented methods have been developed, evaluated, and applied within the Competence Center »Robot Systems for Decontamination in Hazardous Environments« (ROBDEKON) for investigating and developing robotic systems for autonomous decontamination tasks. The objective of this article is to give a holistic, in-depth overview for the ML-based part of the perception pipeline for an autonomous construction machine working in unstructured environments.","PeriodicalId":55437,"journal":{"name":"At-Automatisierungstechnik","volume":"71 1","pages":"219 - 232"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"At-Automatisierungstechnik","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1515/auto-2022-0054","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Robotic systems require holistic capabilities to sense, perceive, and act autonomously within their application environment. A safe and trustworthy autonomous operation is essential, especially in hazardous environments and critical applications like autonomous construction machinery for the decontamination of landfill sites. This article presents an enhanced combination of machine learning (ML) methods with classic artificial intelligence (AI) methods and customized validation methods to ensure highly reliable and accurate sensing and perception of the environment for autonomous construction machinery. The presented methods have been developed, evaluated, and applied within the Competence Center »Robot Systems for Decontamination in Hazardous Environments« (ROBDEKON) for investigating and developing robotic systems for autonomous decontamination tasks. The objective of this article is to give a holistic, in-depth overview for the ML-based part of the perception pipeline for an autonomous construction machine working in unstructured environments.
期刊介绍:
Automatisierungstechnik (AUTO) publishes articles covering the entire range of automation technology: development and application of methods, the operating principles, characteristics, and applications of tools and the interrelationships between automation technology and societal developments. The journal includes a tutorial series on "Theory for Users," and a forum for the exchange of viewpoints concerning past, present, and future developments. Automatisierungstechnik is the official organ of GMA (The VDI/VDE Society for Measurement and Automatic Control) and NAMUR (The Process-Industry Interest Group for Automation Technology).
Topics
control engineering
digital measurement systems
cybernetics
robotics
process automation / process engineering
control design
modelling
information processing
man-machine interfaces
networked control systems
complexity management
machine learning
ambient assisted living
automated driving
bio-analysis technology
building automation
factory automation / smart factories
flexible manufacturing systems
functional safety
mechatronic systems.