{"title":"Comparative Analysis of K-NN and Naïve Bayes Methods to Predict Stock Prices","authors":"Budi Soepriyanto","doi":"10.29040/IJCIS.V2I2.32","DOIUrl":null,"url":null,"abstract":"Abstract — Buying and selling shares is a transaction that is widely carried out at this time, especially buying and selling stocks online which are widely available in the market, to make buying and selling shares require ability or knowledge so that the buying and selling of shares are profitable, to be able to help economic players predict prices. Profit shares or not purchased in the future, this research will conduct stock price predictions using classification methods, namely K-Nearest Neighbor and Naive Bayes, to predict the stock price data used for one month in minute levels totalling 39065 data, based on prediction results. The highest results obtained were using Naive Bayes with an accuracy value of 69.38 then the K-Nearest Neighbor method with a K = 5 value of 67.25%, based on these results it can be concluded that the use of the K-Nearest Neighbor and Naive Bayes methods for prediction share price not yet owned I high accuracy, so it can be combined with other methods or by using other variable predictors.","PeriodicalId":54966,"journal":{"name":"International Journal of Cooperative Information Systems","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cooperative Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.29040/IJCIS.V2I2.32","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract — Buying and selling shares is a transaction that is widely carried out at this time, especially buying and selling stocks online which are widely available in the market, to make buying and selling shares require ability or knowledge so that the buying and selling of shares are profitable, to be able to help economic players predict prices. Profit shares or not purchased in the future, this research will conduct stock price predictions using classification methods, namely K-Nearest Neighbor and Naive Bayes, to predict the stock price data used for one month in minute levels totalling 39065 data, based on prediction results. The highest results obtained were using Naive Bayes with an accuracy value of 69.38 then the K-Nearest Neighbor method with a K = 5 value of 67.25%, based on these results it can be concluded that the use of the K-Nearest Neighbor and Naive Bayes methods for prediction share price not yet owned I high accuracy, so it can be combined with other methods or by using other variable predictors.
期刊介绍:
The paradigm for the next generation of information systems (ISs) will involve large numbers of ISs distributed over large, complex computer/communication networks. Such ISs will manage or have access to large amounts of information and computing services and will interoperate as required. These support individual or collaborative human work. Communication among component systems will be done using protocols that range from conventional ones to those based on distributed AI. We call such next generation ISs Cooperative Information Systems (CIS).
The International Journal of Cooperative Information Systems (IJCIS) addresses the intricacies of cooperative work in the framework of distributed interoperable information systems. It provides a forum for the presentation and dissemination of research covering all aspects of CIS design, requirements, functionality, implementation, deployment, and evolution.