Shihong Hu, Liang Li, Lianheng Zhao, Shi Zuo, Dongliang Huang
{"title":"Strength reduction strategy for rock slope stability using the variation principle based on the Hoek–Brown failure criterion","authors":"Shihong Hu, Liang Li, Lianheng Zhao, Shi Zuo, Dongliang Huang","doi":"10.1007/s10064-023-03303-3","DOIUrl":null,"url":null,"abstract":"<div><p>Rotational failure may exhibit in homogenous rock slopes, and the critical sliding surface of a rock slope based on the rotational failure mechanism is not a single log-spiral under nonlinear failure criterion. This work proposed an advanced nonlinear analysis method for estimating the seismic stability of homogenous slope in rock masses which is governed by the generalized Hoek–Brown failure criterion. According to the virtual power principle, the critical slope height is obtained using particle swarm algorithm. Strength reduction technique is further introduced to explore the reduction strategy of the strength parameters of the Hoek–Brown failure criterion. The outcomes indicate that the factor of safety obtained by simultaneously reducing the unconfined compressive strength <i>σ</i><sub><i>ci</i></sub> and material parameter <i>m</i><sub><i>i</i></sub> is in good agreement with the results of other methods. In addition, two cases are re-analyzed to illustrate the applicability of the proposed method, and the maximum discrepancy with existing results is about 8%. The effects of strength parameters, slope angle, and seismic quasi-static coefficients on the slope stability factor and critical sliding surface are analyzed, which shows that the seismic load and the Hoek–Brown parameters have a significant effect on the slope stability factor. There is no need to assume the expression of the potential sliding surface, which can provide theoretical support and a useful reference for the nonlinear analysis of slope stability.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"82 8","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-023-03303-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rotational failure may exhibit in homogenous rock slopes, and the critical sliding surface of a rock slope based on the rotational failure mechanism is not a single log-spiral under nonlinear failure criterion. This work proposed an advanced nonlinear analysis method for estimating the seismic stability of homogenous slope in rock masses which is governed by the generalized Hoek–Brown failure criterion. According to the virtual power principle, the critical slope height is obtained using particle swarm algorithm. Strength reduction technique is further introduced to explore the reduction strategy of the strength parameters of the Hoek–Brown failure criterion. The outcomes indicate that the factor of safety obtained by simultaneously reducing the unconfined compressive strength σci and material parameter mi is in good agreement with the results of other methods. In addition, two cases are re-analyzed to illustrate the applicability of the proposed method, and the maximum discrepancy with existing results is about 8%. The effects of strength parameters, slope angle, and seismic quasi-static coefficients on the slope stability factor and critical sliding surface are analyzed, which shows that the seismic load and the Hoek–Brown parameters have a significant effect on the slope stability factor. There is no need to assume the expression of the potential sliding surface, which can provide theoretical support and a useful reference for the nonlinear analysis of slope stability.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.