Temperature tolerance threshold and mechanism of oxidative damage in the leaf of Coffea arabica ‘Typica’ under heat stress

IF 1.6 3区 农林科学 Q2 AGRONOMY Plant Production Science Pub Date : 2022-04-19 DOI:10.1080/1343943X.2022.2064309
K. Yamane, Moena Nishikawa, Y. Hirooka, Y. Narita, Tsukasa Kobayashi, Misako Kakiuchi, K. Iwai, M. Iijima
{"title":"Temperature tolerance threshold and mechanism of oxidative damage in the leaf of Coffea arabica ‘Typica’ under heat stress","authors":"K. Yamane, Moena Nishikawa, Y. Hirooka, Y. Narita, Tsukasa Kobayashi, Misako Kakiuchi, K. Iwai, M. Iijima","doi":"10.1080/1343943X.2022.2064309","DOIUrl":null,"url":null,"abstract":"ABSTRACT Coffea arabica, an economically important crop, accounts for most of the coffee consumed globally. Increasing temperature due to climate change can cause a decrease in productivity in many crops, including coffee plants. The maximum temperature at which damage is induced has been reported for many crops, but it remains unclear in coffee plants. Here, we investigated the effect of different temperatures and the physiological damage induced by heat stress using both leaf disks and intact plants of Coffea arabica ‘Typica’. In the experiment using intact plants, we observed leaf damage by a decrease in soil plant analysis development value, and an increase in electrolyte leakage after exposure to 45°C for 96 h, whereas no leaf damage was observed for 72 h. The leaf surface temperatures after exposure to 45°C for 72 and 96 h were 44.0 and 46.3°C, respectively. Thus, a tolerance threshold in leaves of C. arabica ‘Typica’ under heat stress are likely between 44.0 and 46.3°C. The activities of catalase (CAT) and superoxide dismutase (SOD) decreased at 45°C in both leaf disks and intact plants. The decrease in the activities of SOD and CAT under heat stress may be responsible for the increased levels of reactive oxygen species, such as O2 − and H2O2, and the resulting cellular damage. Our findings provide valuable insights into the physiological responses of Coffea arabica ‘Typica’ to heat stress, which may contribute to the breeding and screening of tolerant cultivars in the future. Graphical abstract","PeriodicalId":20259,"journal":{"name":"Plant Production Science","volume":"25 1","pages":"337 - 349"},"PeriodicalIF":1.6000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Production Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/1343943X.2022.2064309","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT Coffea arabica, an economically important crop, accounts for most of the coffee consumed globally. Increasing temperature due to climate change can cause a decrease in productivity in many crops, including coffee plants. The maximum temperature at which damage is induced has been reported for many crops, but it remains unclear in coffee plants. Here, we investigated the effect of different temperatures and the physiological damage induced by heat stress using both leaf disks and intact plants of Coffea arabica ‘Typica’. In the experiment using intact plants, we observed leaf damage by a decrease in soil plant analysis development value, and an increase in electrolyte leakage after exposure to 45°C for 96 h, whereas no leaf damage was observed for 72 h. The leaf surface temperatures after exposure to 45°C for 72 and 96 h were 44.0 and 46.3°C, respectively. Thus, a tolerance threshold in leaves of C. arabica ‘Typica’ under heat stress are likely between 44.0 and 46.3°C. The activities of catalase (CAT) and superoxide dismutase (SOD) decreased at 45°C in both leaf disks and intact plants. The decrease in the activities of SOD and CAT under heat stress may be responsible for the increased levels of reactive oxygen species, such as O2 − and H2O2, and the resulting cellular damage. Our findings provide valuable insights into the physiological responses of Coffea arabica ‘Typica’ to heat stress, which may contribute to the breeding and screening of tolerant cultivars in the future. Graphical abstract
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热胁迫下典型阿拉比卡咖啡叶片的耐温阈值及氧化损伤机制
阿拉比卡咖啡是一种重要的经济作物,占全球咖啡消费量的大部分。气候变化导致的温度升高会导致许多作物的产量下降,包括咖啡树。据报道,对许多作物造成损害的最高温度是多少,但对咖啡植物的影响尚不清楚。本文以典型阿拉比卡咖啡的叶片和完整植株为研究对象,研究了不同温度对其生理损伤的影响。在完整植株的实验中,我们观察到45°C暴露96 h后叶片受到损害,土壤植物分析发育值下降,电解质泄漏增加,而72 h后未观察到叶片受到损害。45°C暴露72和96 h后叶片表面温度分别为44.0和46.3℃。因此,典型阿拉比卡咖啡豆叶片在热胁迫下的耐受阈值可能在44.0至46.3°C之间。45°C时,叶片和完整植株过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性均下降。热胁迫下SOD和CAT活性的降低可能是活性氧(如O2−和H2O2)水平升高以及由此导致的细胞损伤的原因。我们的研究结果为“典型”阿拉比卡咖啡对热胁迫的生理反应提供了有价值的见解,这可能有助于未来耐高温品种的选育和筛选。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Production Science
Plant Production Science 农林科学-农艺学
CiteScore
5.10
自引率
4.00%
发文量
27
审稿时长
>36 weeks
期刊介绍: Plant Production Science publishes original research reports on field crops and resource plants, their production and related subjects, covering a wide range of sciences; physiology, biotechnology, morphology, ecology, cropping system, production technology and post harvest management. Studies on plant production with special attention to resource management and the environment are also welcome. Field surveys on cropping or farming system are also accepted. Articles with a background in other research areas such as soil science, meteorology, biometry, product process and plant protection will be accepted as long as they are significantly related to plant production.
期刊最新文献
A significant correlation between ABA-induced seed-germination delay and salt tolerance of seedling in Brassica napus Effect of localized fertilizer application on deep root development during early growth in upland rice under upland condition The advantages of intercropping to improve productivity in food and forage production – a review A Bayesian approach to assessing uncertainty in the effect of fertilization strategies on paddy rice yield via multiple on-farm experiments Difference in responsiveness of expressions of starch synthesis-related genes to CRCT among rice cultivars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1