A Common-Gate, gm-boosting LNA Using Active Inductor-Based Input Matching for 3.1–10.6 GHz UWB Applications

IF 0.9 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Electrica Pub Date : 2022-06-06 DOI:10.54614/electrica.2022.21136
Humirah Majeed, Vikram Singh
{"title":"A Common-Gate, gm-boosting LNA Using Active Inductor-Based Input Matching for 3.1–10.6 GHz UWB Applications","authors":"Humirah Majeed, Vikram Singh","doi":"10.54614/electrica.2022.21136","DOIUrl":null,"url":null,"abstract":"This paper presents the circuit of a low-noise amplifier (LNA) using active inductor (AI) input matching with common gate (CG) current-reused technique. This configuration is implemented in 90 nm CMOS and enables to achieve high power-gain (S 21 ) with ultra-wideband (UWB) input matching at low power levels. Utilization of modified high-Q AI at the input side of the proposed LNA reduces the number of inductors and achieves UWB from only two inductors. Proposed LNA dissipates 10.4 mW from 1.0 V supply and exhibits an S 21 response of 18.0 ± 0.8 dB for 3.1–10.6 GHz with a maximum and average S 21 of 18.8 dB and 18.22 dB, respectively. The proposed LNA has noise-figure (NF) equal to 3.36–4.68 dB, with input (S 11 ) and output (S 22 ) reflection coefficients of less than − 9.3 dB and − 11.35 dB, respectively across the entire UWB range.","PeriodicalId":36781,"journal":{"name":"Electrica","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54614/electrica.2022.21136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the circuit of a low-noise amplifier (LNA) using active inductor (AI) input matching with common gate (CG) current-reused technique. This configuration is implemented in 90 nm CMOS and enables to achieve high power-gain (S 21 ) with ultra-wideband (UWB) input matching at low power levels. Utilization of modified high-Q AI at the input side of the proposed LNA reduces the number of inductors and achieves UWB from only two inductors. Proposed LNA dissipates 10.4 mW from 1.0 V supply and exhibits an S 21 response of 18.0 ± 0.8 dB for 3.1–10.6 GHz with a maximum and average S 21 of 18.8 dB and 18.22 dB, respectively. The proposed LNA has noise-figure (NF) equal to 3.36–4.68 dB, with input (S 11 ) and output (S 22 ) reflection coefficients of less than − 9.3 dB and − 11.35 dB, respectively across the entire UWB range.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于有源电感输入匹配的3.1-10.6 GHz超宽带共门增益LNA
提出了一种采用有源电感(AI)输入匹配共门电流复用技术的低噪声放大器(LNA)电路。该配置在90nm CMOS中实现,能够在低功率水平下实现高功率增益(s21)和超宽带(UWB)输入匹配。在LNA的输入端使用改进的高q AI,减少了电感器的数量,仅用两个电感器就实现了超宽带。LNA在1.0 V电源下的功耗为10.4 mW,在3.1-10.6 GHz范围内的S 21响应为18.0±0.8 dB,最大S 21和平均S 21分别为18.8 dB和18.22 dB。所提出的LNA的噪声系数(NF)为3.36-4.68 dB,在整个UWB范围内,输入(s11)和输出(s22)反射系数分别小于- 9.3 dB和- 11.35 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrica
Electrica Engineering-Electrical and Electronic Engineering
CiteScore
2.10
自引率
0.00%
发文量
59
期刊最新文献
Design of a High-Efficiency Micro-Inverter with TO-220 Packaged Gallium Nitride - High-Electron-Mobility Transistors Frequency Response Analysis of Mems Comb-Drive Resonator Integrated with a Polymer Thin Film Layer Pattern Search Ameliorated Arithmetic Optimization Algorithm for Engineering Optimization and Infinite Impulse Response System Identification A Machine Learning Approach Based on Indoor Target Positioning by Using Sensor Data Fusion and Improved Cosine Similarity Detection of Alzheimer’s Dementia by Using Deep Time–Frequency Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1