Harnessing Psycho-lingual and Crowd-Sourced Dictionaries for Predicting Taboos in Written Emotional Disclosure in Anonymous Confession Boards.

IF 5.9 Q1 Computer Science Journal of Healthcare Informatics Research Pub Date : 2021-04-30 eCollection Date: 2021-09-01 DOI:10.1007/s41666-021-00092-w
Arindam Paul, Wei-Keng Liao, Alok Choudhary, Ankit Agrawal
{"title":"Harnessing Psycho-lingual and Crowd-Sourced Dictionaries for Predicting Taboos in Written Emotional Disclosure in Anonymous Confession Boards.","authors":"Arindam Paul, Wei-Keng Liao, Alok Choudhary, Ankit Agrawal","doi":"10.1007/s41666-021-00092-w","DOIUrl":null,"url":null,"abstract":"<p><p>There have been many efforts in the last decade in the health informatics community to develop systems that can automatically recognize and predict disclosures on social media. However, a majority of such efforts have focused on simple topic prediction or sentiment classification. However, taboo disclosures on social media that people are not comfortable to talk with their friends represent an abstract theme dependent on context and background. Recent research has demonstrated the efficacy of injecting concept into the learning model to improve prediction. We present a vectorization scheme that combines corpus- and lexicon-based approaches for predicting taboo topics from anonymous social media datasets. The proposed vectorization scheme exploits two context-rich lexicons LIWC and Urban Dictionary. Our methodology achieves cross-validation accuracies of up to 78.1% for the supervised learning task on Facebook Confessions dataset, and 70.5% for the transfer learning task on the YikYak dataset. For both the tasks, supervised algorithms trained with features generated by the proposed vectorizer perform better than vanilla <i>t</i> <i>f</i> <i>-</i> <i>i</i> <i>d</i> <i>f</i> representation. This work presents a novel methodology for predicting taboos from anonymous emotional disclosures on confession boards.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982761/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-021-00092-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

There have been many efforts in the last decade in the health informatics community to develop systems that can automatically recognize and predict disclosures on social media. However, a majority of such efforts have focused on simple topic prediction or sentiment classification. However, taboo disclosures on social media that people are not comfortable to talk with their friends represent an abstract theme dependent on context and background. Recent research has demonstrated the efficacy of injecting concept into the learning model to improve prediction. We present a vectorization scheme that combines corpus- and lexicon-based approaches for predicting taboo topics from anonymous social media datasets. The proposed vectorization scheme exploits two context-rich lexicons LIWC and Urban Dictionary. Our methodology achieves cross-validation accuracies of up to 78.1% for the supervised learning task on Facebook Confessions dataset, and 70.5% for the transfer learning task on the YikYak dataset. For both the tasks, supervised algorithms trained with features generated by the proposed vectorizer perform better than vanilla t f - i d f representation. This work presents a novel methodology for predicting taboos from anonymous emotional disclosures on confession boards.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用心理语言和众源词典预测匿名忏悔板中书面情感披露中的禁忌
过去十年间,健康信息学界一直在努力开发能够自动识别和预测社交媒体上信息披露的系统。然而,这些努力大多集中在简单的话题预测或情感分类上。然而,在社交媒体上人们不便与朋友谈论的禁忌披露是一个抽象的主题,取决于上下文和背景。最近的研究表明,在学习模型中注入概念可以提高预测效果。我们提出了一种向量化方案,它结合了基于语料库和词典的方法,用于预测匿名社交媒体数据集中的禁忌话题。所提出的向量化方案利用了两个上下文丰富的词典 LIWC 和 Urban Dictionary。在 Facebook Confessions 数据集的监督学习任务中,我们的方法实现了高达 78.1% 的交叉验证准确率;在 YikYak 数据集的迁移学习任务中,我们的方法实现了 70.5% 的交叉验证准确率。在这两项任务中,使用由所提出的向量机生成的特征进行训练的监督算法都比 vanilla t f - i d f 表示法表现得更好。这项研究提出了一种从告白板上的匿名情感披露中预测禁忌的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Healthcare Informatics Research
Journal of Healthcare Informatics Research Computer Science-Computer Science Applications
CiteScore
13.60
自引率
1.70%
发文量
12
期刊介绍: Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics.  The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications.   Topics include but are not limited to: ·         healthcare software architecture, framework, design, and engineering;·         electronic health records·         medical data mining·         predictive modeling·         medical information retrieval·         medical natural language processing·         healthcare information systems·         smart health and connected health·         social media analytics·         mobile healthcare·         medical signal processing·         human factors in healthcare·         usability studies in healthcare·         user-interface design for medical devices and healthcare software·         health service delivery·         health games·         security and privacy in healthcare·         medical recommender system·         healthcare workflow management·         disease profiling and personalized treatment·         visualization of medical data·         intelligent medical devices and sensors·         RFID solutions for healthcare·         healthcare decision analytics and support systems·         epidemiological surveillance systems and intervention modeling·         consumer and clinician health information needs, seeking, sharing, and use·         semantic Web, linked data, and ontology·         collaboration technologies for healthcare·         assistive and adaptive ubiquitous computing technologies·         statistics and quality of medical data·         healthcare delivery in developing countries·         health systems modeling and simulation·         computer-aided diagnosis
期刊最新文献
Extracting Pulmonary Nodules and Nodule Characteristics from Radiology Reports of Lung Cancer Screening Patients Using Transformer Models Clinical Information Retrieval: A Literature Review Supporting Fair and Efficient Emergency Medical Services in a Large Heterogeneous Region Validation of Electrocardiogram Based Photoplethysmogram Generated Using U-Net Based Generative Adversarial Networks Depression Detection on Social Media: A Classification Framework and Research Challenges and Opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1