Source Localization Using RSS Measurements with Sensor Position Uncertainty

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Distributed Sensor Networks Pub Date : 2023-07-17 DOI:10.1155/2023/9274297
Qi Wang, Xianqing Li
{"title":"Source Localization Using RSS Measurements with Sensor Position Uncertainty","authors":"Qi Wang, Xianqing Li","doi":"10.1155/2023/9274297","DOIUrl":null,"url":null,"abstract":"Received signal strength- (RSS-) based localization has attracted considerable attention for its low cost and easy implementation. In plenty of existing work, sensor positions, which play an important role in source localization, are usually assumed perfectly known. Unfortunately, they are often subject to uncertainties, which directly leads to effect on localization result. To tackle this problem, we study the RSS-based source localization with sensor position uncertainty. Sensor position uncertainty will be modeled as two types: Gaussian random variable and unknown nonrandom variable. For either of the models, two semidefinite programming (SDP) methods are proposed, i.e., SDP-1 and SDP-2. The SDP-1 method proceeds from the nonconvex problem with respect to the maximum likelihood (ML) estimation and then obtains an SDP problem using proper approximation and relaxation. The SDP-2 method first transfers the sensor position uncertainties to the source position and then obtains an SDP formulation following a similar idea as in SDP-1 method. Numerical examples demonstrate the performance superiority of the proposed methods, compared to some existing methods assuming perfect sensor position information.","PeriodicalId":50327,"journal":{"name":"International Journal of Distributed Sensor Networks","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Sensor Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/9274297","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Received signal strength- (RSS-) based localization has attracted considerable attention for its low cost and easy implementation. In plenty of existing work, sensor positions, which play an important role in source localization, are usually assumed perfectly known. Unfortunately, they are often subject to uncertainties, which directly leads to effect on localization result. To tackle this problem, we study the RSS-based source localization with sensor position uncertainty. Sensor position uncertainty will be modeled as two types: Gaussian random variable and unknown nonrandom variable. For either of the models, two semidefinite programming (SDP) methods are proposed, i.e., SDP-1 and SDP-2. The SDP-1 method proceeds from the nonconvex problem with respect to the maximum likelihood (ML) estimation and then obtains an SDP problem using proper approximation and relaxation. The SDP-2 method first transfers the sensor position uncertainties to the source position and then obtains an SDP formulation following a similar idea as in SDP-1 method. Numerical examples demonstrate the performance superiority of the proposed methods, compared to some existing methods assuming perfect sensor position information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用传感器位置不确定的RSS测量进行源定位
基于接收信号强度(RSS)的定位以其低成本和易于实现而引起了人们的广泛关注。在大量现有工作中,传感器位置在源定位中起着重要作用,通常被认为是完全已知的。遗憾的是,它们经常受到不确定性的影响,这直接导致对定位结果的影响。为了解决这个问题,我们研究了具有传感器位置不确定性的基于RSS的源定位。传感器位置不确定性将被建模为两种类型:高斯随机变量和未知非随机变量。对于任何一种模型,都提出了两种半定规划(SDP)方法,即SDP-1和SDP-2。SDP-1方法从关于最大似然(ML)估计的非凸问题开始,然后使用适当的近似和松弛来获得SDP问题。SDP-2方法首先将传感器位置不确定性转移到源位置,然后按照与SDP-1方法类似的思想获得SDP公式。数值算例表明,与假设传感器位置信息完美的现有方法相比,所提出的方法具有性能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
4.30%
发文量
94
审稿时长
3.6 months
期刊介绍: International Journal of Distributed Sensor Networks (IJDSN) is a JCR ranked, peer-reviewed, open access journal that focuses on applied research and applications of sensor networks. The goal of this journal is to provide a forum for the publication of important research contributions in developing high performance computing solutions to problems arising from the complexities of these sensor network systems. Articles highlight advances in uses of sensor network systems for solving computational tasks in manufacturing, engineering and environmental systems.
期刊最新文献
An Intrusion Detection Model Based on Feature Selection and Improved One-Dimensional Convolutional Neural Network Convex Combination for Wireless Localization Using Biased RSS Measurements Research on Visual SLAM Navigation Techniques for Dynamic Environments Improved Private Data Protection Scheme for Blockchain Smart Contracts Parameter Identification of Frame Structures by considering Shear Deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1