A double-averaged Navier-Stokes k – ω turbulence model for wall flows over rough surfaces with heat transfer

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Turbulence Pub Date : 2021-09-11 DOI:10.1080/14685248.2021.1973014
F. Chedevergne
{"title":"A double-averaged Navier-Stokes k – ω turbulence model for wall flows over rough surfaces with heat transfer","authors":"F. Chedevergne","doi":"10.1080/14685248.2021.1973014","DOIUrl":null,"url":null,"abstract":"The discrete element (roughness) method developed a few decades ago is revisited using the double-averaging technique applied to the Navier-Stokes equation. A -based DANS turbulence model is thus derived to be able to account for roughness effects. Several closure relations are proposed to model all terms induced by the use of the double averaging. The momentum and energy equations are considered in their simplified forms adapted to a 1D channel code in accordance with the DNS results used for the validation. To reconcile the discrete element (roughness) method with the double-averaged Navier-Stokes equations the notion of representative elementary roughness is introduced. A large validation dataset coming from various DNS configurations is then used to assess the predictions of the proposed DANS model. Yet not fully complete, especially regarding the dispersive terms due to a lack of data, the performed validation already proves the overall excellent behaviour of the DANS model and demonstrates the relevance of the present methodology based on the representative elementary roughness.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.1973014","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

Abstract

The discrete element (roughness) method developed a few decades ago is revisited using the double-averaging technique applied to the Navier-Stokes equation. A -based DANS turbulence model is thus derived to be able to account for roughness effects. Several closure relations are proposed to model all terms induced by the use of the double averaging. The momentum and energy equations are considered in their simplified forms adapted to a 1D channel code in accordance with the DNS results used for the validation. To reconcile the discrete element (roughness) method with the double-averaged Navier-Stokes equations the notion of representative elementary roughness is introduced. A large validation dataset coming from various DNS configurations is then used to assess the predictions of the proposed DANS model. Yet not fully complete, especially regarding the dispersive terms due to a lack of data, the performed validation already proves the overall excellent behaviour of the DANS model and demonstrates the relevance of the present methodology based on the representative elementary roughness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有传热的粗糙表面壁流的双平均Navier-Stokes k–ω湍流模型
使用应用于Navier-Stokes方程的双重平均技术,重新审视了几十年前开发的离散元(粗糙度)方法。因此,导出了一个基于DANS的湍流模型,以便能够考虑粗糙度效应。提出了几个闭合关系来模拟由使用双重平均引起的所有项。根据用于验证的DNS结果,动量和能量方程以其简化形式被考虑,该简化形式适用于1D通道代码。为了调和离散单元(粗糙度)方法和双平均Navier-Stokes方程,引入了代表性基本粗糙度的概念。然后使用来自各种DNS配置的大型验证数据集来评估所提出的DANS模型的预测。尽管尚未完全完成,特别是由于缺乏数据而导致的分散项,所进行的验证已经证明了DANS模型的总体良好性能,并证明了基于代表性基本粗糙度的本方法的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
期刊最新文献
A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade On the physical structure, modelling and computation-based prediction of two-dimensional, smooth-wall turbulent boundary layers subjected to streamwise pressure gradients Large-eddy simulation of shock train in convergent-divergent nozzles with isothermal walls Uniform momentum zones in turbulent channel flow Transient energy transfer and cascade analysis for stratified turbulent channel flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1