EFFECT OF ELECTROMAGNETIC FIELD ON THE THERMAL EFFICIENCY OF CONCENTRATED SOLAR COLLECTOR (EXPERIMENTAL STUDY)

Karima E. Amori, Dheyaa A. Khalaf, Firas M. Tuaimah
{"title":"EFFECT OF ELECTROMAGNETIC FIELD ON THE THERMAL EFFICIENCY OF CONCENTRATED SOLAR COLLECTOR (EXPERIMENTAL STUDY)","authors":"Karima E. Amori, Dheyaa A. Khalaf, Firas M. Tuaimah","doi":"10.32852/iqjfmme.v22i1.584","DOIUrl":null,"url":null,"abstract":"In this work, the effect of electromagnetic field on thermal performance of concentrated parabolic trough solar collector is studied experimentally. A two-axis tracking parabolic trough collector formed of a reflector (mirror tapes matrix), of (2m *1m), and an absorber copper tube (receiver) is designed. Water and water-based magnetic iron oxide (Fe3O4) nanofluid are used as heat transfer fluid in the collector. Three volume concentrations (0.3%, 0.5%, and 0.9%) of nanoparticles are investigated under a magnetic flux of (3.2, 4.3, 6.2, and 7.9*103 Gauss), which is installed at absorber inlet, middle, and exit. The three coils are connected to a DC-generator to control the electromagnetic field. The electromagnetic field effect on water flow in the absorber is found weak. A significant thermal improvement is figured when utilizing ferrofluid as a heat transfer fluid in the absorber. It is represented by higher temperature distributions in the absorber and higher solar collector efficiency compared with base fluid.","PeriodicalId":31812,"journal":{"name":"Iraqi Journal for Mechanical and Materials Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal for Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32852/iqjfmme.v22i1.584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the effect of electromagnetic field on thermal performance of concentrated parabolic trough solar collector is studied experimentally. A two-axis tracking parabolic trough collector formed of a reflector (mirror tapes matrix), of (2m *1m), and an absorber copper tube (receiver) is designed. Water and water-based magnetic iron oxide (Fe3O4) nanofluid are used as heat transfer fluid in the collector. Three volume concentrations (0.3%, 0.5%, and 0.9%) of nanoparticles are investigated under a magnetic flux of (3.2, 4.3, 6.2, and 7.9*103 Gauss), which is installed at absorber inlet, middle, and exit. The three coils are connected to a DC-generator to control the electromagnetic field. The electromagnetic field effect on water flow in the absorber is found weak. A significant thermal improvement is figured when utilizing ferrofluid as a heat transfer fluid in the absorber. It is represented by higher temperature distributions in the absorber and higher solar collector efficiency compared with base fluid.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电磁场对集热器热效率的影响(实验研究)
实验研究了电磁场对聚光抛物面槽太阳能集热器热性能的影响。设计了一种由(2m *1m)反射面(镜像带矩阵)和吸收铜管(接收器)组成的两轴跟踪抛物线槽集热器。采用水和水基磁性氧化铁(Fe3O4)纳米流体作为集热器的传热流体。研究了三种体积浓度(0.3%,0.5%和0.9%)的纳米颗粒在磁通量(3.2,4.3,6.2和7.9*103高斯)下的吸附效果,该磁通量安装在吸收器入口,中间和出口。这三个线圈连接到一个直流发电机来控制电磁场。发现电磁场对吸收器内水流的影响较弱。在吸收体中采用铁磁流体作为传热流体,可以显著改善吸收体的热性能。与基液相比,吸收器内温度分布更高,太阳能集热器效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
11
审稿时长
24 weeks
期刊最新文献
INVESTIGATION OF VARIABLES GEOMETRY OF NOVEL PIN CORE-SANDWICH STRUCTURE ON UNSATURATED POLYESTER FLEXTURAL PROPERTIES EXPERIMENTAL AND NUMERICAL ANALYSIS OF NEW CURVED CONFIGURATION OF HEAT SINKS REVIEW OF THE EFFECT OF OCCUPIED DENSITY WITH MIXING VENTILATION ON THERMAL HUMAN COMFORT AND INDOOR AIR QUALITY STUDY ОF PRESSURE DROP AND HEАT TRANSFER CHARACTERISTICS ОF MINI-CHANNEL HEАT SINKS EFFECT OF GEOMETRICAL AND OPERATIONAL PARAMETER ON OIL-WATER SEPARATION IN AXIAL INLET HYDROCYCLONE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1