Cluster-Based Cab Recommender System (CBCRS) for Solo Cab Drivers

IF 0.5 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Information Retrieval Research Pub Date : 2022-01-01 DOI:10.4018/ijirr.314604
Supreet Kaur Mann, Sonal Chawla
{"title":"Cluster-Based Cab Recommender System (CBCRS) for Solo Cab Drivers","authors":"Supreet Kaur Mann, Sonal Chawla","doi":"10.4018/ijirr.314604","DOIUrl":null,"url":null,"abstract":"An efficient cluster-based cab recommender system (CBCRS) provides solo cab drivers with recommendations about the next pickup location having high passenger finding potential at the shortest distance. To recommend the cab drivers with the next passenger location, it becomes imperative to cluster the global positioning system (GPS) coordinates of various pick-up locations of the geographic region as that of the cab. Clustering is the unsupervised data science that groups similar objects into a cluster. Therefore, the objectives of the research paper are fourfold: Firstly, the research paper identifies various clustering techniques to cluster GPS coordinates. Secondly, to design and develop an efficient algorithm to cluster GPS coordinates for CBCRS. Thirdly, the research paper evaluates the proposed algorithm using standard datasets over silhouette coefficient and Calinski-Harabasz index. Finally, the paper concludes and analyses the results of the proposed algorithm to find out the most optimal clustering technique for clustering GPS coordinates assisting cab recommender system.","PeriodicalId":43345,"journal":{"name":"International Journal of Information Retrieval Research","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Retrieval Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijirr.314604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient cluster-based cab recommender system (CBCRS) provides solo cab drivers with recommendations about the next pickup location having high passenger finding potential at the shortest distance. To recommend the cab drivers with the next passenger location, it becomes imperative to cluster the global positioning system (GPS) coordinates of various pick-up locations of the geographic region as that of the cab. Clustering is the unsupervised data science that groups similar objects into a cluster. Therefore, the objectives of the research paper are fourfold: Firstly, the research paper identifies various clustering techniques to cluster GPS coordinates. Secondly, to design and develop an efficient algorithm to cluster GPS coordinates for CBCRS. Thirdly, the research paper evaluates the proposed algorithm using standard datasets over silhouette coefficient and Calinski-Harabasz index. Finally, the paper concludes and analyses the results of the proposed algorithm to find out the most optimal clustering technique for clustering GPS coordinates assisting cab recommender system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集群的出租车推荐系统(CBCRS
一种高效的基于集群的出租车推荐系统(CBCRS)为单独的出租车司机提供关于在最短距离内具有高乘客发现潜力的下一个接送地点的推荐。为了向驾驶室驾驶员推荐下一个乘客位置,必须将地理区域的各种接送位置的全球定位系统(GPS)坐标与驾驶室的坐标进行聚类。聚类是一种无监督的数据科学,将相似的对象分组到一个聚类中。因此,本文的研究目标有四个:首先,本文确定了各种聚类技术来对GPS坐标进行聚类。其次,设计并开发了一种有效的CBCRS GPS坐标聚类算法。第三,本文使用剪影系数和Calinski-Harabasz指数的标准数据集对所提出的算法进行了评估。最后,本文对所提出的算法的结果进行了总结和分析,以找出对GPS坐标辅助驾驶室推荐系统进行聚类的最佳聚类技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Information Retrieval Research
International Journal of Information Retrieval Research COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
0.00%
发文量
64
期刊最新文献
Effective Information Retrieval Framework for Twitter Data Analytics A New Scalable Deep Learning Model of Pattern Recognition for Medical Diagnosis Using Model Aggregation and Model Selection Promoting Document Relevance Using Query Term Proximity for Exploratory Search Clustering of Relevant Documents Based on Findability Effort in Information Retrieval Template based Question Answering System Over Semantic Web
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1