Mahalanobis Fuzzy C-Means Clustering with Spatial Information for Image Segmentation

Wawan Gunawan, N. Latifah
{"title":"Mahalanobis Fuzzy C-Means Clustering with Spatial Information for Image Segmentation","authors":"Wawan Gunawan, N. Latifah","doi":"10.22146/ijccs.81521","DOIUrl":null,"url":null,"abstract":"A fuzzy C-Means segmentation algorithm can be implemented in an image segmentationbased on the Mahalanobis distance; However, this method only needs to consider the colorspace situation, not the neighborhood system of the image. It was an effective edge detectionprocess unwell performed and generated less accuracy in segmentation results. In this article,we propose a new method for image segmentation with Mahalanobis fuzzy C-means Spatialinformation (MFCMS). The proposed method combines feature space and images of theinformation of the neighborhood (spatial information) to improve the accuracy of the result ofsegmentation on the image. The MFCMS consists of two steps, the histogram threshold modulefor the first step and the MFCMS module for the second step. The Histogram Threshold moduleis used to get the MFCMS initialization conditions for the cluster centroid and the number ofcentroids. Test results show that this method provides better segmentation performance thanclassification errors (ME) and relative foreground area errors (RAE) of 1.61 and 3.48,respectively.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.81521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A fuzzy C-Means segmentation algorithm can be implemented in an image segmentationbased on the Mahalanobis distance; However, this method only needs to consider the colorspace situation, not the neighborhood system of the image. It was an effective edge detectionprocess unwell performed and generated less accuracy in segmentation results. In this article,we propose a new method for image segmentation with Mahalanobis fuzzy C-means Spatialinformation (MFCMS). The proposed method combines feature space and images of theinformation of the neighborhood (spatial information) to improve the accuracy of the result ofsegmentation on the image. The MFCMS consists of two steps, the histogram threshold modulefor the first step and the MFCMS module for the second step. The Histogram Threshold moduleis used to get the MFCMS initialization conditions for the cluster centroid and the number ofcentroids. Test results show that this method provides better segmentation performance thanclassification errors (ME) and relative foreground area errors (RAE) of 1.61 and 3.48,respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间信息的马氏模糊C均值聚类图像分割
模糊C均值分割算法可以在基于马氏距离的图像分割中实现;然而,这种方法只需要考虑颜色空间的情况,而不需要考虑图像的邻域系统。这是一个有效的边缘检测过程,执行不当,分割结果的准确性较低。本文提出了一种新的基于马氏模糊C均值空间信息的图像分割方法。该方法将特征空间和图像的邻域信息(空间信息)相结合,提高了图像分割结果的准确性。MFCMS由两个步骤组成,第一步为直方图阈值模块,第二步为MFCMS模块。直方图阈值模块用于获得聚类质心和质心数量的MFCMS初始化条件。测试结果表明,该方法比分类误差(ME)和相对前景区域误差(RAE)分别为1.61和3.48提供了更好的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1