Integration of Membrane Bioreactor and Reverse Osmosis for Textile Wastewater Treatment and Reclamation: A Pilot-Scale Study

Yen-Chun Hsieh, Po-Hsun Lin, Pin-Hui Lee, Emily K. Kin
{"title":"Integration of Membrane Bioreactor and Reverse Osmosis for Textile Wastewater Treatment and Reclamation: A Pilot-Scale Study","authors":"Yen-Chun Hsieh, Po-Hsun Lin, Pin-Hui Lee, Emily K. Kin","doi":"10.46604/peti.2023.5273","DOIUrl":null,"url":null,"abstract":"Membrane bioreactor (MBR) technology, a combination of traditional activated sludge and membrane filtration, has been widely used for industrial wastewater treatment and reclamation. This paper highlights a pilot-scale MBR system treating textile wastewater from a textile factory in Taiwan. Over 7 months of continuous operation, the average MBR influent chemical oxygen demand (COD) is 332 mg/L, and the average effluent COD is 38 mg/L, which results in approximately 88% COD removal. A reverse osmosis (RO) module is installed after 2 months of MBR operation and uses the MBR permeate as its influent. The RO produces pure water with average COD, conductivity, and color of 7 mg/L, 16 μS/cm, and 7 Pt-Co, respectively. The RO permeate is suitable for reuse in manufacturing processes, and the RO membrane shows stable performance with TMP, which is less than or equal to 0.5 kg/cm2 during the test. The study demonstrates the great feasibility of MBR combined with RO for treating and reclaiming textile wastewater.","PeriodicalId":33402,"journal":{"name":"Proceedings of Engineering and Technology Innovation","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/peti.2023.5273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane bioreactor (MBR) technology, a combination of traditional activated sludge and membrane filtration, has been widely used for industrial wastewater treatment and reclamation. This paper highlights a pilot-scale MBR system treating textile wastewater from a textile factory in Taiwan. Over 7 months of continuous operation, the average MBR influent chemical oxygen demand (COD) is 332 mg/L, and the average effluent COD is 38 mg/L, which results in approximately 88% COD removal. A reverse osmosis (RO) module is installed after 2 months of MBR operation and uses the MBR permeate as its influent. The RO produces pure water with average COD, conductivity, and color of 7 mg/L, 16 μS/cm, and 7 Pt-Co, respectively. The RO permeate is suitable for reuse in manufacturing processes, and the RO membrane shows stable performance with TMP, which is less than or equal to 0.5 kg/cm2 during the test. The study demonstrates the great feasibility of MBR combined with RO for treating and reclaiming textile wastewater.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膜生物反应器与反渗透一体化处理纺织废水的中试研究
膜生物反应器(MBR)技术是传统活性污泥与膜过滤的结合,已广泛应用于工业废水的处理和回收。本文介绍了台湾某纺织厂的MBR系统处理纺织废水的中试情况。连续运行7个月,MBR进水平均化学需氧量(COD)为332 mg/L,出水平均COD为38 mg/L, COD去除率约为88%。在MBR运行2个月后安装反渗透(RO)模块,并使用MBR渗透液作为进水。RO制得的纯水平均COD、电导率和颜色分别为7mg /L、16 μS/cm和7pt - co。该反渗透膜适合在制造过程中重复使用,在TMP作用下,反渗透膜性能稳定,在试验中小于等于0.5 kg/cm2。研究表明MBR与反渗透相结合处理和回收纺织废水具有很大的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
12
审稿时长
18 weeks
期刊最新文献
Quantitative Shaking Evaluation of Bracing-Strengthened and Base-Isolated Buildings Using Seismic Intensity Level Prediction of Crop Leaf Health by MCCM and Histogram Learning Model Using Leaf Region A Self-Repairing Natural Rubber as a Novel Material Pad to Develop an Electro-Surgical Training Prototype Application of Genetic Algorithm and Analytical Method to Determine the Appropriate Locations and Capacities for Distributed Energy System A Fake Profile Detection Model Using Multistage Stacked Ensemble Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1