{"title":"Vertical convergence of turbulent and double-diffusive heat flux drives warming and erosion of Antarctic Winter Water in summer","authors":"I. Giddy, I. Fer, S. Swart, S. Nicholson","doi":"10.1175/jpo-d-22-0259.1","DOIUrl":null,"url":null,"abstract":"\nThe seasonal warming of AntarcticWinterWater (WW) is a key process that occurs along the path of deep water transformation to intermediate waters. These intermediate waters then enter the upper branch of the circumpolar overturning circulation. Despite its importance, the driving mechanisms that mediate the warming of Antarctic WW remain unknown, and their quantitative evaluation is lacking. Using 38 days of glider measurements of microstructure shear, we characterize the rate of turbulent dissipation and its drivers over a summer season in the northern Weddell Sea. Observed dissipation rates in the surface layer are mainly forced by winds, and explained by the stress scaling (r2=0.84). However, mixing to the base of the mixed layer during strong wind events is suppressed by vertical stratification from sea ice melt. Between the WW layer and the warm and saline circumpolar deep water, a subsurface layer of enhanced dissipation is maintained by double-diffusive convection (DDC). We develop a WW layer temperature budget and show that a warming trend (0.2°C over 28 days) is driven by a convergence of heat flux through mechanically-driven mixing at the base of the mixed layer and DDC at the base of the WW layer. Notably, excluding the contribution from DDC results in an underestimation of WW warming by 23%, highlighting the importance of adequately representing DDC in ocean models. These results further suggest that an increase in storm intensity and frequency during summer could increase the rate of warming of WW with implications for rates of upper ocean water mass transformation.","PeriodicalId":56115,"journal":{"name":"Journal of Physical Oceanography","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jpo-d-22-0259.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The seasonal warming of AntarcticWinterWater (WW) is a key process that occurs along the path of deep water transformation to intermediate waters. These intermediate waters then enter the upper branch of the circumpolar overturning circulation. Despite its importance, the driving mechanisms that mediate the warming of Antarctic WW remain unknown, and their quantitative evaluation is lacking. Using 38 days of glider measurements of microstructure shear, we characterize the rate of turbulent dissipation and its drivers over a summer season in the northern Weddell Sea. Observed dissipation rates in the surface layer are mainly forced by winds, and explained by the stress scaling (r2=0.84). However, mixing to the base of the mixed layer during strong wind events is suppressed by vertical stratification from sea ice melt. Between the WW layer and the warm and saline circumpolar deep water, a subsurface layer of enhanced dissipation is maintained by double-diffusive convection (DDC). We develop a WW layer temperature budget and show that a warming trend (0.2°C over 28 days) is driven by a convergence of heat flux through mechanically-driven mixing at the base of the mixed layer and DDC at the base of the WW layer. Notably, excluding the contribution from DDC results in an underestimation of WW warming by 23%, highlighting the importance of adequately representing DDC in ocean models. These results further suggest that an increase in storm intensity and frequency during summer could increase the rate of warming of WW with implications for rates of upper ocean water mass transformation.
期刊介绍:
The Journal of Physical Oceanography (JPO) (ISSN: 0022-3670; eISSN: 1520-0485) publishes research related to the physics of the ocean and to processes operating at its boundaries. Observational, theoretical, and modeling studies are all welcome, especially those that focus on elucidating specific physical processes. Papers that investigate interactions with other components of the Earth system (e.g., ocean–atmosphere, physical–biological, and physical–chemical interactions) as well as studies of other fluid systems (e.g., lakes and laboratory tanks) are also invited, as long as their focus is on understanding the ocean or its role in the Earth system.