Supercritical Fluid Extraction in Resveratrol Isolation Technology

IF 0.5 Q4 CHEMISTRY, MULTIDISCIPLINARY Eurasian Chemico-Technological Journal Pub Date : 2021-08-30 DOI:10.18321/ectj1082
A. N. Zhabayeva, M.T. Velyamov, N.E. Nakypbekova, S. Dolgikh, S. Adekenov
{"title":"Supercritical Fluid Extraction in Resveratrol Isolation Technology","authors":"A. N. Zhabayeva, M.T. Velyamov, N.E. Nakypbekova, S. Dolgikh, S. Adekenov","doi":"10.18321/ectj1082","DOIUrl":null,"url":null,"abstract":"The article discusses the use of supercritical fluid extraction in the technology for the isolation of resveratrol, a phenolic compound found in Vitis vinifera L. A technology was developed for obtaining the sum of polyphenolic compounds with a quantitative content of resveratrol. As a raw material for the production of the substance, Vitis pomace was used after the production of wine and juice, which makes it possible to introduce complex processing of plant raw materials. For the first time, by the method of carbon dioxide extraction, the conditions for the isolation of resveratrol from Vitis pomace raw materials of the Kazakhstani varieties Saperavi and Cabernet were optimized. The influence of pressure (from 10 to 35 MPa), duration (from 60 to 180 min), temperature (from 50 to 70 °C) was studied when optimizing the extraction mode. The quantitative content of resveratrol in carbon dioxide extracts was determined by high-performance liquid chromatography( HPLC). The optimal parameters for the extraction of Vitis vinifera L. pomace (pressure, duration, temperature) were established, which provide a relatively high content of resveratrol in the extracts.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The article discusses the use of supercritical fluid extraction in the technology for the isolation of resveratrol, a phenolic compound found in Vitis vinifera L. A technology was developed for obtaining the sum of polyphenolic compounds with a quantitative content of resveratrol. As a raw material for the production of the substance, Vitis pomace was used after the production of wine and juice, which makes it possible to introduce complex processing of plant raw materials. For the first time, by the method of carbon dioxide extraction, the conditions for the isolation of resveratrol from Vitis pomace raw materials of the Kazakhstani varieties Saperavi and Cabernet were optimized. The influence of pressure (from 10 to 35 MPa), duration (from 60 to 180 min), temperature (from 50 to 70 °C) was studied when optimizing the extraction mode. The quantitative content of resveratrol in carbon dioxide extracts was determined by high-performance liquid chromatography( HPLC). The optimal parameters for the extraction of Vitis vinifera L. pomace (pressure, duration, temperature) were established, which provide a relatively high content of resveratrol in the extracts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超临界流体萃取白藜芦醇分离技术
本文探讨了超临界流体萃取法分离葡萄中酚类化合物白藜芦醇的技术,并建立了白藜芦醇定量含量的多酚类化合物总和提取技术。作为生产该物质的原料,葡萄果渣是在葡萄酒和果汁生产之后使用的,这使得引入植物原料的复杂加工成为可能。首次采用二氧化碳萃取法,对从哈萨克斯坦葡萄果渣原料中提取白藜芦醇的条件进行了优化。考察了压力(10 ~ 35 MPa)、持续时间(60 ~ 180 min)、温度(50 ~ 70℃)对提取方式的影响。采用高效液相色谱法测定了白藜芦醇在二氧化碳提取物中的含量。确定了葡萄渣提取的最佳工艺条件(压力、时间、温度),可获得较高的白藜芦醇含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eurasian Chemico-Technological Journal
Eurasian Chemico-Technological Journal CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
1.10
自引率
20.00%
发文量
6
审稿时长
20 weeks
期刊介绍: The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.
期刊最新文献
Technology for Isolation Essential Oil from the Buds of Populus balsamifera L. Obtaining Edible Pullulan-based Films with Antimicrobial Properties The Synthesis and in vitro Study of 9-fluorenylmethoxycarbonyl Protected Non-Protein Amino Acids Antimicrobial Activity Optimization of the Porous Structure of Carbon Electrodes for Hybrid Supercapacitors with a Redox Electrolyte Based on Potassium Bromide Influence of Annealing Time on the Optical and Electrical Properties of Tin Dioxide-Based Coatings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1