Alicia Amairani Flores Díaz, Martha Alicia Velázquez Machuca, Adriana Medina Ramírez, José Luis Montañez Soto, J. González, José Luis Pimentel Equihua
{"title":"Boron adsorption on modified zeolites: Effect of modifier and source of water","authors":"Alicia Amairani Flores Díaz, Martha Alicia Velázquez Machuca, Adriana Medina Ramírez, José Luis Montañez Soto, J. González, José Luis Pimentel Equihua","doi":"10.20937/rica.54473","DOIUrl":null,"url":null,"abstract":"The removal of boron from drinking water is a concern in various parts of the world due to the toxic effects of this metalloid in high concentrations. In this paper, zeolites LTL and FAU X were synthesized and modified with salts of nickel (NiCl2), iron (FeCl3), and aminopropyltriethoxysilane (APS) in order to promote their affinity for boron species present in aqueous systems. The adsorption capacity of modified zeolites for boron was evaluated in a synthetic boron solution and with groundwater samples for human use. The effect of the pH and zeolite dose was studied in adsorption tests using groundwater. The modified zeolites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen physisorption, and Fourier-transform infrared spectroscopy. Results indicated that the modification of zeolites favors affinity for boron species. The highest adsorption capacity of boron on zeolites was achieved in the synthetic solution. The adsorption capacity of the modified zeolites depended on the pH, the electrical conductivity, the modifying agent, the zeolitic structure, and the dose of adsorbent. The zeolitic structure-modifying agent interaction was decisive for boron adsorption capacity, with LTL-Ni zeolite being the best-performing adsorbent, thanks to its textural properties and nickel’s ability to form complexes with boron species.","PeriodicalId":49608,"journal":{"name":"Revista Internacional De Contaminacion Ambiental","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Internacional De Contaminacion Ambiental","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.20937/rica.54473","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The removal of boron from drinking water is a concern in various parts of the world due to the toxic effects of this metalloid in high concentrations. In this paper, zeolites LTL and FAU X were synthesized and modified with salts of nickel (NiCl2), iron (FeCl3), and aminopropyltriethoxysilane (APS) in order to promote their affinity for boron species present in aqueous systems. The adsorption capacity of modified zeolites for boron was evaluated in a synthetic boron solution and with groundwater samples for human use. The effect of the pH and zeolite dose was studied in adsorption tests using groundwater. The modified zeolites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen physisorption, and Fourier-transform infrared spectroscopy. Results indicated that the modification of zeolites favors affinity for boron species. The highest adsorption capacity of boron on zeolites was achieved in the synthetic solution. The adsorption capacity of the modified zeolites depended on the pH, the electrical conductivity, the modifying agent, the zeolitic structure, and the dose of adsorbent. The zeolitic structure-modifying agent interaction was decisive for boron adsorption capacity, with LTL-Ni zeolite being the best-performing adsorbent, thanks to its textural properties and nickel’s ability to form complexes with boron species.
期刊介绍:
En esta revista se aceptan para su publicación trabajos originales y de revisión sobre aspectos físicos y químicos de la contaminación, investigaciones sobre la distribución y los efectos biológicos y ecológicos de los contaminantes; así como sobre tecnología e implementación de nuevas técnicas para su medida y control; también son aceptados estudios sociológicos, económicos y legales acerca del tema. Se publicarán los escritos que mediante arbitraje de especialistas y a juicio del Consejo Editorial tengan el nivel y la calidad adecuados para ello y su contenido será responsabilidad única de los autores. La Revista Internacional de Contaminación Ambiental es de periodicidad trimestral y se publica los días 1 de febrero, mayo, agosto y noviembre.