{"title":"Anise-cultured cells abolish 2,4-dichlorophenoxyacetic acid in culture medium.","authors":"Kumiko Tanida, H. Shiota","doi":"10.5511/plantbiotechnology.19.0805b","DOIUrl":null,"url":null,"abstract":"In anise (Pimpinella anisum, family Apiaceae), callus-like embryogenic cells (embryogenic callus) are induced by culturing hypocotyl explants in 2,4-dichlorophenoxyacetic acid (2,4-D)-containing medium, and somatic embryos are formed from embryogenic callus transferred into 2,4-D-free medium. Anise somatic embryos are also induced even if embryogenic callus is continually cultured in 2,4-D-containing medium without subculturing. In this study, we aimed to clarify the dynamics of 2,4-D during anise cell culture. After culturing anise callus in 2,4-D-containing medium, 2,4-D in the medium was analyzed by thin-layer chromatography. In the medium, 2,4-D was decreased during anise callus culture, and fully abolished after 5-day culture. On the other hand, no decrease in 2,4-D was observed in the other Apiaceae species (carrot, fennel, dill, parsley, and coriander). After 7-day culture of anise callus, the medium was collected following removal of the cultured cells and 2,4-D was added to the collected medium. After 10 days of incubation and shaking, 2,4-D was markedly decreased in the medium. However, when the collected medium was heat-treated at 100°C, 2,4-D was detected after 20 days of incubation. Therefore, anise callus has a specific 2,4-D degradation system, in which heat-inactivated secreted molecules may participate.","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"36 3 1","pages":"209-212"},"PeriodicalIF":1.4000,"publicationDate":"2019-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5511/plantbiotechnology.19.0805b","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.19.0805b","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
In anise (Pimpinella anisum, family Apiaceae), callus-like embryogenic cells (embryogenic callus) are induced by culturing hypocotyl explants in 2,4-dichlorophenoxyacetic acid (2,4-D)-containing medium, and somatic embryos are formed from embryogenic callus transferred into 2,4-D-free medium. Anise somatic embryos are also induced even if embryogenic callus is continually cultured in 2,4-D-containing medium without subculturing. In this study, we aimed to clarify the dynamics of 2,4-D during anise cell culture. After culturing anise callus in 2,4-D-containing medium, 2,4-D in the medium was analyzed by thin-layer chromatography. In the medium, 2,4-D was decreased during anise callus culture, and fully abolished after 5-day culture. On the other hand, no decrease in 2,4-D was observed in the other Apiaceae species (carrot, fennel, dill, parsley, and coriander). After 7-day culture of anise callus, the medium was collected following removal of the cultured cells and 2,4-D was added to the collected medium. After 10 days of incubation and shaking, 2,4-D was markedly decreased in the medium. However, when the collected medium was heat-treated at 100°C, 2,4-D was detected after 20 days of incubation. Therefore, anise callus has a specific 2,4-D degradation system, in which heat-inactivated secreted molecules may participate.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.