Bioremediation of Polycyclic Aromatic Hydrocarbons in Contaminated Soils Using Vermicompost

IF 2.3 4区 工程技术 Q3 ENGINEERING, CHEMICAL International Journal of Chemical Engineering Pub Date : 2022-12-22 DOI:10.1155/2022/5294170
F. Mohammadi-Moghadam, Ramazan Khodadadi, M. Sedehi, M. Arbabi
{"title":"Bioremediation of Polycyclic Aromatic Hydrocarbons in Contaminated Soils Using Vermicompost","authors":"F. Mohammadi-Moghadam, Ramazan Khodadadi, M. Sedehi, M. Arbabi","doi":"10.1155/2022/5294170","DOIUrl":null,"url":null,"abstract":"Bioremediation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils are reported in many literatures. Composting, in addition to bioremediation, can simultaneously increase soil organic matter content and soil fertility and is thus regarded as one of the most cost-effective methods of soil remediation. In this study, biodegradation of phenanthrene (PHE) and pyrene (PYR) is reported by microbial consortia enriched by vermicompost. After soil samples preparation and grinding, the samples were contaminated with 100, 200, and 300 mg/kg of PHE and PYR concentrations and inoculated with three concentrations (2, 4, and 6 wt.%) of vermicompost. PHE and PYR concentrations were analyzed by HPLC during bioremediation. After 70 days, two highly capable microbial consortia were used to remove the pollutants in bioaugmentation conditions. Analysis of their microbial composition revealed that the consortia contain several Proteobacteria phylum bacterial species, and the most common genera were Pseudomonas and Citrobacter. Decontamination rates for PHE and PYR were estimated to be 89% and 83% over 45 days, respectively. Biodegradation kinetics revealed that microbial degradation followed a first-order kinetics. This study provides clear evidence on the biodegradation of PHE and PYR, paving the way for the development of bioremediation technologies for the recovery of polluted ecosystems.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/5294170","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Bioremediation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils are reported in many literatures. Composting, in addition to bioremediation, can simultaneously increase soil organic matter content and soil fertility and is thus regarded as one of the most cost-effective methods of soil remediation. In this study, biodegradation of phenanthrene (PHE) and pyrene (PYR) is reported by microbial consortia enriched by vermicompost. After soil samples preparation and grinding, the samples were contaminated with 100, 200, and 300 mg/kg of PHE and PYR concentrations and inoculated with three concentrations (2, 4, and 6 wt.%) of vermicompost. PHE and PYR concentrations were analyzed by HPLC during bioremediation. After 70 days, two highly capable microbial consortia were used to remove the pollutants in bioaugmentation conditions. Analysis of their microbial composition revealed that the consortia contain several Proteobacteria phylum bacterial species, and the most common genera were Pseudomonas and Citrobacter. Decontamination rates for PHE and PYR were estimated to be 89% and 83% over 45 days, respectively. Biodegradation kinetics revealed that microbial degradation followed a first-order kinetics. This study provides clear evidence on the biodegradation of PHE and PYR, paving the way for the development of bioremediation technologies for the recovery of polluted ecosystems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蚯蚓堆肥对污染土壤中多环芳烃的生物修复作用
多环芳烃(PAHs)在污染土壤中的生物修复已得到广泛报道。堆肥除生物修复外,还能同时提高土壤有机质含量和土壤肥力,被认为是最具成本效益的土壤修复方法之一。本研究报道了由蚯蚓堆肥富集的微生物群落对菲(PHE)和芘(PYR)的生物降解。土壤样品制备和粉碎后,分别以100、200和300 mg/kg的PHE和PYR浓度污染样品,并接种3种浓度(2、4和6 wt.%)的蚯蚓堆肥。HPLC法测定生物修复过程中PHE和PYR的浓度。70天后,在生物强化条件下,使用两个高效微生物群落去除污染物。微生物组成分析表明,该菌群含有多种变形菌门细菌,其中最常见的属是假单胞菌和柠檬酸杆菌。PHE和PYR的去污率估计在45天内分别为89%和83%。生物降解动力学表明,微生物降解遵循一级动力学。本研究为PHE和PYR的生物降解提供了明确的证据,为开发用于污染生态系统恢复的生物修复技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Chemical Engineering
International Journal of Chemical Engineering Chemical Engineering-General Chemical Engineering
CiteScore
4.00
自引率
3.70%
发文量
95
审稿时长
14 weeks
期刊介绍: International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures. As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
期刊最新文献
A Review of Stochastic Optimization Algorithms Applied in Food Engineering Analysis Study of Available Alternatives for Mitigation of Aromatic Hydrocarbon Emissions from a Glycol Dehydration Unit Effective Removal of Ibuprofen from Aqueous Solution Using Cationic Surface-Active Agents in Dissolved Air-Flotation Process Effect of inside Surface Baffle Conditions on Just Drawdown Impeller Rotational Speed A Study on the Valorization of Rice Straw into Different Value-Added Products and Biofuels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1