Analysis of Characteristics of Plastic Zone and Mechanical Properties of Anchor Structure in Hydraulic Tunnels with High Ground Temperature

Yuhang Huang, Haibo Jiang
{"title":"Analysis of Characteristics of Plastic Zone and Mechanical Properties of Anchor Structure in Hydraulic Tunnels with High Ground Temperature","authors":"Yuhang Huang, Haibo Jiang","doi":"10.13052/ejcm2642-2085.30468","DOIUrl":null,"url":null,"abstract":"In order to explore the characteristics of plastic zone and the mechanical properties of anchor structure during the construction of hydraulic tunnels with high ground temperature, the high-temperature section of the diversion tunnel of a hydropower station in Xinjiang was studied. Based on the temperature data and the axial force data of the bolt on-site, the Drucker-Prager constitutive model and the finite element method were adopted to simulate and analyze the temperature-stress coupled field and the initial anchoring support during the construction of the high ground temperature tunnels. The results showed that, after the excavation of the tunnel, a crescent-shaped plastic zone first appeared at the hance, then expanded to the spandrel and vault, and finally formed an irregular ring-shaped plastic zone around the tunnel. The higher the initial temperature of surrounding rocks, the larger the plastic deformation and the range of the plastic zone. When the temperature exceeded 80∘∘C, the plastic zone was more likely to expand to the spandrel and vault; and meanwhile, when the bolt was closer to the hance, the neutral point was closer to the cavity wall. As the stress was released, the neutral point moved from close to the cavity wall to away from the cavity wall. Anchoring support can effectively limit the development of plastic zone in surrounding rocks under high ground temperature. After 10 days of anchoring support at 60∘∘C, 80∘∘C, and 100∘∘C, the range of the plastic zone decreased by 9%, 20%, 24%, respectively, and the maximum axial force of a single bolt was 19.4 kN, 20.1 kN, and 23.8 kN, respectively. The higher the temperature, the higher the strength of the bolt.","PeriodicalId":45463,"journal":{"name":"European Journal of Computational Mechanics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ejcm2642-2085.30468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

In order to explore the characteristics of plastic zone and the mechanical properties of anchor structure during the construction of hydraulic tunnels with high ground temperature, the high-temperature section of the diversion tunnel of a hydropower station in Xinjiang was studied. Based on the temperature data and the axial force data of the bolt on-site, the Drucker-Prager constitutive model and the finite element method were adopted to simulate and analyze the temperature-stress coupled field and the initial anchoring support during the construction of the high ground temperature tunnels. The results showed that, after the excavation of the tunnel, a crescent-shaped plastic zone first appeared at the hance, then expanded to the spandrel and vault, and finally formed an irregular ring-shaped plastic zone around the tunnel. The higher the initial temperature of surrounding rocks, the larger the plastic deformation and the range of the plastic zone. When the temperature exceeded 80∘∘C, the plastic zone was more likely to expand to the spandrel and vault; and meanwhile, when the bolt was closer to the hance, the neutral point was closer to the cavity wall. As the stress was released, the neutral point moved from close to the cavity wall to away from the cavity wall. Anchoring support can effectively limit the development of plastic zone in surrounding rocks under high ground temperature. After 10 days of anchoring support at 60∘∘C, 80∘∘C, and 100∘∘C, the range of the plastic zone decreased by 9%, 20%, 24%, respectively, and the maximum axial force of a single bolt was 19.4 kN, 20.1 kN, and 23.8 kN, respectively. The higher the temperature, the higher the strength of the bolt.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高地温水工隧道塑性区特征及锚杆结构力学性能分析
为探讨高地温水工隧道施工中塑性区特征及锚杆结构力学性能,对新疆某水电站引水隧洞高温段进行了研究。基于现场温度数据和锚杆轴力数据,采用Drucker-Prager本构模型和有限元法,对高温隧道施工过程中的温度-应力耦合场和初始锚固支护进行了模拟分析。结果表明:隧道开挖后,首先在洞口出现新月形塑性区,然后扩展到拱肩和拱顶,最后在隧道周围形成不规则的环形塑性区。围岩初始温度越高,塑性变形越大,塑性区范围也越大。当温度超过80°C时,塑性区更容易扩展到拱肩和拱顶;同时,锚杆越靠近悬架,中性点越靠近空腔壁。随着应力的释放,中性点由靠近腔壁向远离腔壁移动。在高温地温条件下,锚固支护可以有效地限制围岩塑性区的发展。在60°C、80°C和100°C下锚固支护10天后,塑性区范围分别减小了9%、20%、24%,单根锚杆的最大轴向力分别为19.4 kN、20.1 kN和23.8 kN。温度越高,螺栓的强度越高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
8.30%
发文量
0
期刊最新文献
Evaluation of Piezoelectric-based Composite for Actuator Application via FEM with Thermal Analogy Vortex and Core Detection using Computer Vision and Machine Learning Methods The Impact of Flexural/Torsional Coupling on the Stability of Symmetrical Laminated Plates Static Mechanics and Dynamic Analysis and Control of Bridge Structures Under Multi-Load Coupling Effects Analysis of the Mechanical Characteristics of Tunnels Under the Coupling Effect of Submarine Active Faults and Ground Vibrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1