Theoretical-experimental evaluation of partially shaded solar photovoltaic arrays through methodological framework: a case study involving two identical 1.5 kWp PV generators.
M. Rodrigues, P. Torres, M. Galhardo, Otávio A. Chase, Alan Amorim, Wesley Leão, W. Macêdo
{"title":"Theoretical-experimental evaluation of partially shaded solar photovoltaic arrays through methodological framework: a case study involving two identical 1.5 kWp PV generators.","authors":"M. Rodrigues, P. Torres, M. Galhardo, Otávio A. Chase, Alan Amorim, Wesley Leão, W. Macêdo","doi":"10.1115/1.4054922","DOIUrl":null,"url":null,"abstract":"\n This paper applies different methodologies through measurement and simulation for the partial shading analysis of SPV arrays. A two-diode photovoltaic solar cell model evaluates SPV arrays under shading conditions. Experimental data from two identical 1.5 kWp PV generators was used as a study case. One is subjected to shading caused by the branches of a tree, resulting in its electricity production being affected for several days, and the other is shadow-free. The authors use a methodology based on short-circuit of the solar cells to determine the different irradiance levels. It was considered because it avoids using several irradiance sensors to map the shaded and unshaded regions in a shadow SPV array. The two-diode photovoltaic solar cell model used was developed in MATLAB/Simulink. The applied model and the map irradiance methodology can be used to represent IV curves in complex shading. For example, what could help identify if a given SPV array is working on a Global Maximum Power Point or a Local Maximum Power Point. Furthermore, the experimental results demonstrated that the model and methodology are useful in understanding what happens with SPV arrays in very complex shadow situations.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054922","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2
Abstract
This paper applies different methodologies through measurement and simulation for the partial shading analysis of SPV arrays. A two-diode photovoltaic solar cell model evaluates SPV arrays under shading conditions. Experimental data from two identical 1.5 kWp PV generators was used as a study case. One is subjected to shading caused by the branches of a tree, resulting in its electricity production being affected for several days, and the other is shadow-free. The authors use a methodology based on short-circuit of the solar cells to determine the different irradiance levels. It was considered because it avoids using several irradiance sensors to map the shaded and unshaded regions in a shadow SPV array. The two-diode photovoltaic solar cell model used was developed in MATLAB/Simulink. The applied model and the map irradiance methodology can be used to represent IV curves in complex shading. For example, what could help identify if a given SPV array is working on a Global Maximum Power Point or a Local Maximum Power Point. Furthermore, the experimental results demonstrated that the model and methodology are useful in understanding what happens with SPV arrays in very complex shadow situations.
期刊介绍:
The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.