{"title":"Study on surrounding rock deformation and gas control of entry automatically formed by roof cutting in high-gas coal seam","authors":"Hai-Feng Gao, Yubing Gao, Jingchen Qi, Q. Fu, Xingyu Zhang","doi":"10.1177/01445987231181722","DOIUrl":null,"url":null,"abstract":"Severe deformation of surrounding rock and excess-gas are the main problems faced in mining of high-gas coal seam. This paper analyzes the deformation characteristics and mechanical model of surrounding rock in high-gas coal seam, and proposes the control technology of surrounding rock deformation and gas prevention and control. Based on this, the entry automatically formed by roof cutting (EAFRC) surrounding rock control technology and constant resistance large deformation anchor cable (CRLDA) support control technology in Shaqu coal mine are put forward. At the same time, the surrounding rock stress and gas migration law of the working face under traditional mining method and EAFRC mining were compared and analyzed. Through the field engineering test, the monitoring and analysis of surrounding rock deformation and gas concentration, the average surrounding rock deformation of roof cutting roadway is 310 mm, and the gas concentration of retained roadway by roof cutting is 0.31%. Through the research in this paper, the surrounding rock stability and gas control of the working face have been realized, and the non-pillar mining of EAFRC has ensured the safe mining of high gas working faces, which provides a reference for the mining of similar mines in non-pillar mining. At the same time, the technical system of EAFRC in non-pillar mining was established, which promoted the development and application of non-pillar mining.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"41 1","pages":"1559 - 1575"},"PeriodicalIF":1.9000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01445987231181722","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Severe deformation of surrounding rock and excess-gas are the main problems faced in mining of high-gas coal seam. This paper analyzes the deformation characteristics and mechanical model of surrounding rock in high-gas coal seam, and proposes the control technology of surrounding rock deformation and gas prevention and control. Based on this, the entry automatically formed by roof cutting (EAFRC) surrounding rock control technology and constant resistance large deformation anchor cable (CRLDA) support control technology in Shaqu coal mine are put forward. At the same time, the surrounding rock stress and gas migration law of the working face under traditional mining method and EAFRC mining were compared and analyzed. Through the field engineering test, the monitoring and analysis of surrounding rock deformation and gas concentration, the average surrounding rock deformation of roof cutting roadway is 310 mm, and the gas concentration of retained roadway by roof cutting is 0.31%. Through the research in this paper, the surrounding rock stability and gas control of the working face have been realized, and the non-pillar mining of EAFRC has ensured the safe mining of high gas working faces, which provides a reference for the mining of similar mines in non-pillar mining. At the same time, the technical system of EAFRC in non-pillar mining was established, which promoted the development and application of non-pillar mining.
期刊介绍:
Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.