Deuteron nuclear magnetic resonance and dielectric studies of molecular reorientation and charge transport in succinonitrile-glutaronitrile plastic crystals
Sofiane Lansab , Philipp Münzner , Herbert Zimmermann , Roland Böhmer
{"title":"Deuteron nuclear magnetic resonance and dielectric studies of molecular reorientation and charge transport in succinonitrile-glutaronitrile plastic crystals","authors":"Sofiane Lansab , Philipp Münzner , Herbert Zimmermann , Roland Böhmer","doi":"10.1016/j.nocx.2022.100097","DOIUrl":null,"url":null,"abstract":"<div><p>Plastic crystals are currently discussed as matrices for highly conducting materials. Among them, mixtures based on succinonitrile (SN) have received particular attention. Long ago, Austen Angell [J. Non-Cryst. Solids 131–133 (1991) 13] has shown that in mixtures with glutaronitrile (GN), the plastic phase of SN can deeply be supercooled. Here, a mixture of 60% SN – featuring deuterated methylene groups – and 40% GN is studied using <sup>2</sup>H nuclear magnetic resonance (NMR), thus allowing selective access to the reorientational dynamics of SN. These dynamics agree with that inferred for partially deuterated SN-GN from dielectric spectroscopy which also reveal that a significant H/D isotope effect is absent. Additionally, in the liquid and slightly below the transition to the plastically crystalline state, mixtures of 60% SN and 40% GN are studied using field-gradient NMR diffusometry as well as rotational viscometry.</p></div>","PeriodicalId":37132,"journal":{"name":"Journal of Non-Crystalline Solids: X","volume":"14 ","pages":"Article 100097"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590159122000176/pdfft?md5=5670f4e2a35abc57be433f8c31ade106&pid=1-s2.0-S2590159122000176-main.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Crystalline Solids: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590159122000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2
Abstract
Plastic crystals are currently discussed as matrices for highly conducting materials. Among them, mixtures based on succinonitrile (SN) have received particular attention. Long ago, Austen Angell [J. Non-Cryst. Solids 131–133 (1991) 13] has shown that in mixtures with glutaronitrile (GN), the plastic phase of SN can deeply be supercooled. Here, a mixture of 60% SN – featuring deuterated methylene groups – and 40% GN is studied using 2H nuclear magnetic resonance (NMR), thus allowing selective access to the reorientational dynamics of SN. These dynamics agree with that inferred for partially deuterated SN-GN from dielectric spectroscopy which also reveal that a significant H/D isotope effect is absent. Additionally, in the liquid and slightly below the transition to the plastically crystalline state, mixtures of 60% SN and 40% GN are studied using field-gradient NMR diffusometry as well as rotational viscometry.