Thermally activated persulfate oxidation of Basic Fuchsin dye: Effect of different operating parameters, kinetic, and thermodynamic study

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL International Journal of Chemical Kinetics Pub Date : 2023-08-31 DOI:10.1002/kin.21690
Naima Habache, Ouahiba Bechiri
{"title":"Thermally activated persulfate oxidation of Basic Fuchsin dye: Effect of different operating parameters, kinetic, and thermodynamic study","authors":"Naima Habache,&nbsp;Ouahiba Bechiri","doi":"10.1002/kin.21690","DOIUrl":null,"url":null,"abstract":"<p>The present paper aims to investigate the efficiency of thermal activation persulfate in eliminating the organic dye “Basic Fuchsin” (BF). In addition, the study attempts to elucidate the effect of different operating parameters, such as persulfate dosage (0.44–4.4 mM), the initial solution pH of (3–10), and temperature (25–50°C), on the process. The effects of various anions and water matrices on BF discoloration were investigated. Thus, the findings revealed that 94.15% of BF can be eliminated using persulfate at a concentration of 4.4 mM and a temperature equal to 50°C. It occurs under the following operating conditions: oxidation time of 60 min, initial pH equal to 6, the pollutant concentration of 10 ppm, and stirring speed equal to 300 rpm. Furthermore, the kinetic study indicated that the degradation of the BF dye using PS followed a first-order pattern with rate constants varying within a range of 15.3 × 10<sup>−3</sup>–43.2 × 10<sup>−3</sup> min<sup>−1</sup>. Based on the Arrhenius equation, the activation energy of the studied process was determined to be 29 kJ mol<sup>−1</sup>, suggesting that a moderate activation energy is required for BF discoloration. The results of the thermodynamic study confirm that the oxidation process is non-spontaneous and endothermic. Coexisting inorganic anions delayed BF discoloration to varying degrees, and the inhibitory action followed the following order: carbonate &gt; chloride &gt; sulfate &gt; nitrate. Organic pollutants oxidation by the thermal activation of the persulfate is a simple and effective method for the depollution of waste textile water.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"56 1","pages":"30-42"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21690","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper aims to investigate the efficiency of thermal activation persulfate in eliminating the organic dye “Basic Fuchsin” (BF). In addition, the study attempts to elucidate the effect of different operating parameters, such as persulfate dosage (0.44–4.4 mM), the initial solution pH of (3–10), and temperature (25–50°C), on the process. The effects of various anions and water matrices on BF discoloration were investigated. Thus, the findings revealed that 94.15% of BF can be eliminated using persulfate at a concentration of 4.4 mM and a temperature equal to 50°C. It occurs under the following operating conditions: oxidation time of 60 min, initial pH equal to 6, the pollutant concentration of 10 ppm, and stirring speed equal to 300 rpm. Furthermore, the kinetic study indicated that the degradation of the BF dye using PS followed a first-order pattern with rate constants varying within a range of 15.3 × 10−3–43.2 × 10−3 min−1. Based on the Arrhenius equation, the activation energy of the studied process was determined to be 29 kJ mol−1, suggesting that a moderate activation energy is required for BF discoloration. The results of the thermodynamic study confirm that the oxidation process is non-spontaneous and endothermic. Coexisting inorganic anions delayed BF discoloration to varying degrees, and the inhibitory action followed the following order: carbonate > chloride > sulfate > nitrate. Organic pollutants oxidation by the thermal activation of the persulfate is a simple and effective method for the depollution of waste textile water.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
碱性品红染料的过硫酸盐热活化氧化:不同操作参数的影响、动力学和热力学研究
本文研究了热活化过硫酸盐对有机染料碱性品红(BF)的去除效果。此外,该研究试图阐明不同操作参数对该过程的影响,如过硫酸盐剂量(0.44–4.4 mM)、初始溶液pH(3–10)和温度(25–50°C)。研究了各种阴离子和水基质对BF褪色的影响。因此,研究结果表明,使用浓度为4.4mM、温度等于50°C的过硫酸盐可以消除94.15%的BF。它发生在以下操作条件下:氧化时间60分钟,初始pH等于6,污染物浓度为10ppm,搅拌速度等于300rpm。此外,动力学研究表明,使用PS降解BF染料遵循一级模式,速率常数在15.3×10−3–43.2×10−3min−1范围内变化。根据Arrhenius方程,所研究过程的活化能为29kJ mol−1,表明BF变色需要中等的活化能。热力学研究结果证实,氧化过程是非自发和吸热的。共存的无机阴离子不同程度地延缓BF褪色,其抑制作用依次为:碳酸盐>氯化物>硫酸盐>硝酸盐。过硫酸盐热活化氧化有机污染物是一种简单有效的纺织废水脱污染方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
期刊最新文献
Issue Information Issue Information Issue Information Decomposition of CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ : Implications for CH x / NH y ${\rm CH}_{\rm {\it x}}/{\rm NH}_{\rm {\it y}}$ radical–radical reactions Force training neural network potential energy surface models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1