Rya Seltzer, A. Domer, L. Bodner, S. Bouchebti, Maya Malka, E. Amsalem, E. Levin
{"title":"The effect of bumble bee gynes’ reproductive status on the response to CO2 narcosis","authors":"Rya Seltzer, A. Domer, L. Bodner, S. Bouchebti, Maya Malka, E. Amsalem, E. Levin","doi":"10.1080/00218839.2023.2242125","DOIUrl":null,"url":null,"abstract":"Abstract Many organisms undergo extreme physiological and behavioral changes that dictate their responses to different stimuli during their life cycle. Bumble bees (Bombus sp.) display an annual life cycle, in which the virgin gynes emerge, disperse, mate, and undergo several months of winter diapause before establishing new colonies in the spring. CO2 narcosis induces a direct transition from mating to reproduction, thus diapause can be bypassed. The mechanism underlying the response to CO2 narcosis remains unclear. Here, we used Bombus terrestris gynes in different reproductive statuses (virgin, mated, and post-diapause) to examine the effect of CO2 narcosis on ovarian development, body mass, protein uptake, and metabolic rate. We found that the impact of CO2 narcosis on gynes was inhibited by mating, with virgin gynes showing the strongest effect of CO2 narcosis on ovary activation and protein turnover. We show that mating inhibits the effect of CO2 narcosis prior to the diapause period, suggesting that this effect is upstream to that of CO2 narcosis.","PeriodicalId":15006,"journal":{"name":"Journal of Apicultural Research","volume":"62 1","pages":"1043 - 1051"},"PeriodicalIF":1.4000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Apicultural Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/00218839.2023.2242125","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Many organisms undergo extreme physiological and behavioral changes that dictate their responses to different stimuli during their life cycle. Bumble bees (Bombus sp.) display an annual life cycle, in which the virgin gynes emerge, disperse, mate, and undergo several months of winter diapause before establishing new colonies in the spring. CO2 narcosis induces a direct transition from mating to reproduction, thus diapause can be bypassed. The mechanism underlying the response to CO2 narcosis remains unclear. Here, we used Bombus terrestris gynes in different reproductive statuses (virgin, mated, and post-diapause) to examine the effect of CO2 narcosis on ovarian development, body mass, protein uptake, and metabolic rate. We found that the impact of CO2 narcosis on gynes was inhibited by mating, with virgin gynes showing the strongest effect of CO2 narcosis on ovary activation and protein turnover. We show that mating inhibits the effect of CO2 narcosis prior to the diapause period, suggesting that this effect is upstream to that of CO2 narcosis.
期刊介绍:
The Journal of Apicultural Research is a refereed scientific journal dedicated to bringing the best research on bees. The Journal of Apicultural Research publishes original research articles, original theoretical papers, notes, comments and authoritative reviews on scientific aspects of the biology, ecology, natural history, conservation and culture of all types of bee (superfamily Apoidea).