{"title":"Compositional dependence of physical parameters of Sb-doped InSe nanochalcogenide alloys","authors":"Diksha Thakur, V. S. Rangra","doi":"10.1080/01411594.2023.2244113","DOIUrl":null,"url":null,"abstract":"ABSTRACT InSe is a III-VI semiconducting layered compound having potential applications in memories, solar cells, infrared sensors, switching devices and optical fibers. In this article various physical parameters of In0.1Se0.9-x Sb x (x = 0, 0.04, 0.08, 0.12) chalcogenide alloy depending on the varying composition of Se and Sb are discussed. The physical parameters include the theoretical calculations of average coordination number, number of constraints, floppy modes, number of lone pair electrons, deviation of stoichiometry, average heat of atomization, mean bond energy, density, molar volume, compactness, cohesive energy, electronegativity, energy band gap, conduction and valance band energy and glass transition temperature. The number of lone pair electrons and floppy modes is found to decrease, whereas the average coordination number, mean bond energy, average heat of atomization and density are found to increase with increasing Sb content. The theoretical values of glass transition temperature are calculated using the Tichy-Ticha and Lankhorst approach.","PeriodicalId":19881,"journal":{"name":"Phase Transitions","volume":"96 1","pages":"637 - 656"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phase Transitions","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/01411594.2023.2244113","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT InSe is a III-VI semiconducting layered compound having potential applications in memories, solar cells, infrared sensors, switching devices and optical fibers. In this article various physical parameters of In0.1Se0.9-x Sb x (x = 0, 0.04, 0.08, 0.12) chalcogenide alloy depending on the varying composition of Se and Sb are discussed. The physical parameters include the theoretical calculations of average coordination number, number of constraints, floppy modes, number of lone pair electrons, deviation of stoichiometry, average heat of atomization, mean bond energy, density, molar volume, compactness, cohesive energy, electronegativity, energy band gap, conduction and valance band energy and glass transition temperature. The number of lone pair electrons and floppy modes is found to decrease, whereas the average coordination number, mean bond energy, average heat of atomization and density are found to increase with increasing Sb content. The theoretical values of glass transition temperature are calculated using the Tichy-Ticha and Lankhorst approach.
期刊介绍:
Phase Transitions is the only journal devoted exclusively to this important subject. It provides a focus for papers on most aspects of phase transitions in condensed matter. Although emphasis is placed primarily on experimental work, theoretical papers are welcome if they have some bearing on experimental results. The areas of interest include:
-structural phase transitions (ferroelectric, ferroelastic, multiferroic, order-disorder, Jahn-Teller, etc.) under a range of external parameters (temperature, pressure, strain, electric/magnetic fields, etc.)
-geophysical phase transitions
-metal-insulator phase transitions
-superconducting and superfluid transitions
-magnetic phase transitions
-critical phenomena and physical properties at phase transitions
-liquid crystals
-technological applications of phase transitions
-quantum phase transitions
Phase Transitions publishes both research papers and invited articles devoted to special topics. Major review papers are particularly welcome. A further emphasis of the journal is the publication of a selected number of small workshops, which are at the forefront of their field.