Speed–wave height operational envelope for high-speed planing craft in seaways: theoretical vs. empirical methods

IF 1.4 Q3 ENGINEERING, MARINE Ship Technology Research Pub Date : 2021-09-05 DOI:10.1080/09377255.2021.1973263
Himabindu Allaka, Morel Groper
{"title":"Speed–wave height operational envelope for high-speed planing craft in seaways: theoretical vs. empirical methods","authors":"Himabindu Allaka, Morel Groper","doi":"10.1080/09377255.2021.1973263","DOIUrl":null,"url":null,"abstract":"ABSTRACT High-speed planing craft operating in real seaways encounter high impact loads. The extreme motions and accelerations resulting from such impacts adversely affect the structure of the craft and its payload as well as pose a risk to the crew on-board. Limiting craft speed according to the sea state using a speed-wave height operational envelope might ensure structural integrity and greatly improve safe navigation. Accurate estimation of motion and acceleration of planing craft in a seaway is a key requirement in developing reliable and usable allowable speed vs. wave height operational curves. In this paper, the Motion Assessment of Planing Craft in a Seaway (MAPCS) tool, a nonlinear time-domain approach vs. several existing approaches based on experimental, empirical and classification societies’ formulas for vertical accelerations and speed vs. wave height limit curves are compared. It is found that the MAPCS approach provides more realistic estimations compared to the commonly employed methods.","PeriodicalId":51883,"journal":{"name":"Ship Technology Research","volume":"70 1","pages":"46 - 55"},"PeriodicalIF":1.4000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ship Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09377255.2021.1973263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT High-speed planing craft operating in real seaways encounter high impact loads. The extreme motions and accelerations resulting from such impacts adversely affect the structure of the craft and its payload as well as pose a risk to the crew on-board. Limiting craft speed according to the sea state using a speed-wave height operational envelope might ensure structural integrity and greatly improve safe navigation. Accurate estimation of motion and acceleration of planing craft in a seaway is a key requirement in developing reliable and usable allowable speed vs. wave height operational curves. In this paper, the Motion Assessment of Planing Craft in a Seaway (MAPCS) tool, a nonlinear time-domain approach vs. several existing approaches based on experimental, empirical and classification societies’ formulas for vertical accelerations and speed vs. wave height limit curves are compared. It is found that the MAPCS approach provides more realistic estimations compared to the commonly employed methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海上高速飞机的速度-波高操作包线:理论与经验方法
高速滑行艇在实际航道中运行时会遇到高冲击载荷。这种撞击产生的极端运动和加速度对飞行器的结构及其有效载荷产生不利影响,并对机上机组人员构成风险。根据海况,使用速度-波高操作包络线限制船只速度,可以确保结构完整性,并大大提高安全航行。准确估计滑行艇在航道中的运动和加速度是开发可靠和可用的允许速度与波高运行曲线的关键要求。在本文中,比较了一种非线性时域方法和几种基于实验、经验和分类协会的垂直加速度和速度与波高极限曲线公式的现有方法——航道中平面船的运动评估(MAPCS)工具。研究发现,与常用的方法相比,MAPCS方法提供了更现实的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ship Technology Research
Ship Technology Research ENGINEERING, MARINE-
CiteScore
4.90
自引率
4.50%
发文量
10
期刊最新文献
Measurements of steady manoeuvring forces and moments over an axisymmetric body with appendages in a wind tunnel Practical ship afterbody optimization by multifidelity techniques Unsteady ship–bank interaction: a comparison between experimental and computational predictions A new power prediction method using ship in-service data: a case study on a general cargo ship Active flow control applied to a ship rudder model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1