The Comparison of ReliefF and C.45 for Feature Selection on Heart Disease Classification Using Backpropagation

Anita Desiani, Yuli Andriani, Irmeilyana Irmeilyana, Rifkie Primartha, M. Arhami, Dwi Fitrianti, Henny Nur Syafitri
{"title":"The Comparison of ReliefF and C.45 for Feature Selection on Heart Disease Classification Using Backpropagation","authors":"Anita Desiani, Yuli Andriani, Irmeilyana Irmeilyana, Rifkie Primartha, M. Arhami, Dwi Fitrianti, Henny Nur Syafitri","doi":"10.22146/ijccs.82948","DOIUrl":null,"url":null,"abstract":"One of the datasets used to predict heart disease is UCI dataset. unfortunately, the dataset contains missing data. the missing data dramatically affects the performance of the backpropagation classification method. One of the techniques used to handle missing data is feature selection. This study compares the ReliefF and the C4.5 algorithm in feature selection to handle missing data. The results of these algorithms are applied to the classification of heart disease using the Backpropagation. The results will be measured based on accuracy, precision, and recall. The performance results of the ReliefF and Backpropagation are an accuracy of 82.653%, a precision of 82.7%, and a recall of 82.7%. The performance results of the C4.5 and backpropagation are an accuracy of 80.61%, a precision of 80.4%, and a recall of 80.6%. Based on the results it can be concluded that the ReliefF gives better performance results on backpropagation than the performance results of the C4.5. Although, the results of C4.5 are below ReliefF but the results are quite satisfactory because of the accuracy, precision and recall results obtained above 80%. This shows that ReliefF and C4.5 can select features that affect the UCI heart disease patient dataset.","PeriodicalId":31625,"journal":{"name":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCCS Indonesian Journal of Computing and Cybernetics Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijccs.82948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the datasets used to predict heart disease is UCI dataset. unfortunately, the dataset contains missing data. the missing data dramatically affects the performance of the backpropagation classification method. One of the techniques used to handle missing data is feature selection. This study compares the ReliefF and the C4.5 algorithm in feature selection to handle missing data. The results of these algorithms are applied to the classification of heart disease using the Backpropagation. The results will be measured based on accuracy, precision, and recall. The performance results of the ReliefF and Backpropagation are an accuracy of 82.653%, a precision of 82.7%, and a recall of 82.7%. The performance results of the C4.5 and backpropagation are an accuracy of 80.61%, a precision of 80.4%, and a recall of 80.6%. Based on the results it can be concluded that the ReliefF gives better performance results on backpropagation than the performance results of the C4.5. Although, the results of C4.5 are below ReliefF but the results are quite satisfactory because of the accuracy, precision and recall results obtained above 80%. This shows that ReliefF and C4.5 can select features that affect the UCI heart disease patient dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ReliefF和C.45在心脏病反向传播分类特征选择中的比较
用于预测心脏病的数据集之一是UCI数据集。不幸的是,数据集包含丢失的数据。缺失数据严重影响反向传播分类方法的性能。用于处理缺失数据的技术之一是特征选择。本研究比较了ReliefF和C4.5算法在特征选择上处理缺失数据的效果。将这些算法的结果应用于反向传播的心脏病分类。结果将根据准确性、精密度和召回率来衡量。ReliefF和Backpropagation的性能结果是准确率为82.653%,精度为82.7%,召回率为82.7%。C4.5和反向传播的性能结果是准确率为80.61%,精密度为80.4%,召回率为80.6%。根据结果可以得出结论,ReliefF在反向传播方面的性能结果优于C4.5的性能结果。虽然C4.5的结果低于ReliefF,但由于获得了80%以上的正确率,精密度和召回率结果,结果相当令人满意。这表明ReliefF和C4.5可以选择影响UCI心脏病患者数据集的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
12 weeks
期刊最新文献
Identify Reviews of Pedulilindungi Applications using Topic Modeling with Latent Dirichlet Allocation Method Convolutional Long Short-Term Memory (C-LSTM) For Multi Product Prediction Optimizing ODP Device Placement on FTTH Network Using Genetic Algorithms Backward Elimination for Feature Selection on Breast Cancer Classification Using Logistic Regression and Support Vector Machine Algorithms ESSAY ANSWER CLASSIFICATION WITH SMOTE RANDOM FOREST AND ADABOOST IN AUTOMATED ESSAY SCORING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1