{"title":"A terminological history of early elementary particle physics","authors":"Helge Kragh","doi":"10.1007/s00407-022-00299-2","DOIUrl":null,"url":null,"abstract":"<div><p>By 1933, the class of generally accepted elementary particles comprised the electron, the photon, the proton as well as newcomers in the shape of the neutron, the positron, and the neutrino. During the following decade, a new and poorly understood particle, the mesotron or meson, was added to the list. By paying close attention to the names of these and other particles and to the sometimes controversial proposals of names, a novel perspective on this well-researched line of development is offered. Part of the study investigates the circumstances around the coining of “positron” as an alternative to “positive electron.” Another and central part is concerned with the many names associated with the discovery of what in the late 1930s was generally called the “mesotron” but eventually became known as the “meson” and later again the muon and pion. The naming of particles in the period up to the early 1950s was more than just a matter of agreeing on convenient terms, it also reflected different conceptions of the particles and in some cases the uncertainty regarding their nature and relations to existing theories. Was the particle discovered in the cosmic rays the same as the one responsible for the nuclear forces? While two different names might just be synonymous referents, they might also refer to widely different conceptual images.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 1","pages":"73 - 120"},"PeriodicalIF":0.7000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-022-00299-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for History of Exact Sciences","FirstCategoryId":"98","ListUrlMain":"https://link.springer.com/article/10.1007/s00407-022-00299-2","RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
By 1933, the class of generally accepted elementary particles comprised the electron, the photon, the proton as well as newcomers in the shape of the neutron, the positron, and the neutrino. During the following decade, a new and poorly understood particle, the mesotron or meson, was added to the list. By paying close attention to the names of these and other particles and to the sometimes controversial proposals of names, a novel perspective on this well-researched line of development is offered. Part of the study investigates the circumstances around the coining of “positron” as an alternative to “positive electron.” Another and central part is concerned with the many names associated with the discovery of what in the late 1930s was generally called the “mesotron” but eventually became known as the “meson” and later again the muon and pion. The naming of particles in the period up to the early 1950s was more than just a matter of agreeing on convenient terms, it also reflected different conceptions of the particles and in some cases the uncertainty regarding their nature and relations to existing theories. Was the particle discovered in the cosmic rays the same as the one responsible for the nuclear forces? While two different names might just be synonymous referents, they might also refer to widely different conceptual images.
期刊介绍:
The Archive for History of Exact Sciences casts light upon the conceptual groundwork of the sciences by analyzing the historical course of rigorous quantitative thought and the precise theory of nature in the fields of mathematics, physics, technical chemistry, computer science, astronomy, and the biological sciences, embracing as well their connections to experiment. This journal nourishes historical research meeting the standards of the mathematical sciences. Its aim is to give rapid and full publication to writings of exceptional depth, scope, and permanence.