A statistical study on promoting effects of tropical cyclones over the Bay of Bengal on the South China Sea summer monsoon onset

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Science Letters Pub Date : 2023-03-07 DOI:10.1002/asl.1164
Xiaoting Fan, Ying Li
{"title":"A statistical study on promoting effects of tropical cyclones over the Bay of Bengal on the South China Sea summer monsoon onset","authors":"Xiaoting Fan,&nbsp;Ying Li","doi":"10.1002/asl.1164","DOIUrl":null,"url":null,"abstract":"<p>The onset date of the South China Sea (SCS) summer monsoon (SCSSM) and the generation time of the first tropical cyclone (TC) over the Bay of Bengal (BoB) during late April and early June were significantly correlated with a correlation coefficient of 0.58 during 1979–2020. The composite analysis found that under the impact of BoB TCs, an enhanced southwesterly low-level flow transported abundant moisture from the BoB to the northern SCS. Besides, the diabatic heating related to TC convection stimulated an anticyclonic anomaly in the upper troposphere over the southern Tibetan Plateau, which was conducive to the enhancement and expansion of the South Asian high (SAH) over the Indo-China Peninsula. The stronger easterly outflows from the eastern periphery of the SAH overlapped with low-level water vapor convergence over the northern SCS, enhancing the development of monsoon convection. Thus, more condensation heating warmed the tropospheric atmosphere and reversed the meridional temperature gradient over the SCS, implying the SCSSM onset.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1164","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1164","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The onset date of the South China Sea (SCS) summer monsoon (SCSSM) and the generation time of the first tropical cyclone (TC) over the Bay of Bengal (BoB) during late April and early June were significantly correlated with a correlation coefficient of 0.58 during 1979–2020. The composite analysis found that under the impact of BoB TCs, an enhanced southwesterly low-level flow transported abundant moisture from the BoB to the northern SCS. Besides, the diabatic heating related to TC convection stimulated an anticyclonic anomaly in the upper troposphere over the southern Tibetan Plateau, which was conducive to the enhancement and expansion of the South Asian high (SAH) over the Indo-China Peninsula. The stronger easterly outflows from the eastern periphery of the SAH overlapped with low-level water vapor convergence over the northern SCS, enhancing the development of monsoon convection. Thus, more condensation heating warmed the tropospheric atmosphere and reversed the meridional temperature gradient over the SCS, implying the SCSSM onset.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
孟加拉湾热带气旋对南海夏季风爆发促进作用的统计研究
1979年至2020年,南海夏季风(SCSSM)的爆发日期和孟加拉湾上空第一个热带气旋(TC)的产生时间与0.58的相关系数显著相关。综合分析发现,在BoB TC的影响下,增强的西南低水位流将大量水分从BoB输送到SCS北部。此外,与TC对流相关的非绝热加热在青藏高原南部对流层上部激发了一个反气旋异常,有利于南亚高压在中南半岛的增强和扩张。SAH东部外围更强的东部外流与南海北部的低层水汽辐合重叠,增强了季风对流的发展。因此,更多的冷凝加热使对流层大气变暖,并逆转了SCS上空的经向温度梯度,这意味着SCSSM的开始。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
期刊最新文献
Issue Information Change detection of the Köppen climate zones in Southeastern Europe Issue Information Are convection-permitting climate projections reliable for urban planning over Africa? A case study of Johannesburg Diurnal asymmetry of surface albedo in a semi-arid grassland over the China's Loess Plateau
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1