Semantic Analysis of a Linear Temporal Extension of Quantum Logic and Its Dynamic Aspect

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Computational Logic Pub Date : 2022-12-16 DOI:10.1145/3576926
Tsubasa Takagi
{"title":"Semantic Analysis of a Linear Temporal Extension of Quantum Logic and Its Dynamic Aspect","authors":"Tsubasa Takagi","doi":"10.1145/3576926","DOIUrl":null,"url":null,"abstract":"Although various dynamic or temporal logics have been proposed to verify quantum protocols and systems, these two viewpoints have not been studied comprehensively enough. We propose Linear Temporal Quantum Logic (LTQL), a linear temporal extension of quantum logic with a quantum implication, and extend it to Dynamic Linear Temporal Quantum Logic (DLTQL). This logic has temporal operators to express transitions by unitary operators (quantum gates) and dynamic ones to express those by projections (projective measurement). We then prove some logical properties of the relationship between these two transitions expressed by LTQL and DLTQL. A drawback in applying LTQL to the verification of quantum protocols is that these logics cannot express the future operator in linear temporal logic. We propose a way to mitigate this drawback by using a translation from (D)LTQL to Linear Temporal Modal Logic (LTML) and a simulation. This translation reduces the satisfiability problem of (D)LTQL formulas to that of LTML with the classical semantics over quantum states.","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3576926","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Although various dynamic or temporal logics have been proposed to verify quantum protocols and systems, these two viewpoints have not been studied comprehensively enough. We propose Linear Temporal Quantum Logic (LTQL), a linear temporal extension of quantum logic with a quantum implication, and extend it to Dynamic Linear Temporal Quantum Logic (DLTQL). This logic has temporal operators to express transitions by unitary operators (quantum gates) and dynamic ones to express those by projections (projective measurement). We then prove some logical properties of the relationship between these two transitions expressed by LTQL and DLTQL. A drawback in applying LTQL to the verification of quantum protocols is that these logics cannot express the future operator in linear temporal logic. We propose a way to mitigate this drawback by using a translation from (D)LTQL to Linear Temporal Modal Logic (LTML) and a simulation. This translation reduces the satisfiability problem of (D)LTQL formulas to that of LTML with the classical semantics over quantum states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子逻辑线性时间扩展的语义分析及其动态方面
虽然已经提出了各种动态或时间逻辑来验证量子协议和系统,但这两种观点的研究还不够全面。我们提出了线性时间量子逻辑(LTQL),这是量子逻辑的线性时间扩展,具有量子含义,并将其扩展到动态线性时间量子逻辑(DLTQL)。这个逻辑有时间算子,用酉算子(量子门)表示跃迁;有动态算子,用投影(投影测量)表示跃迁。然后,我们证明了LTQL和DLTQL表达的这两种转换之间关系的一些逻辑属性。将LTQL应用于量子协议验证的一个缺点是,这些逻辑不能用线性时间逻辑表示未来算子。我们提出了一种方法,通过使用从(D)LTQL到线性时序模态逻辑(LTML)的转换和模拟来减轻这一缺点。这种转换将(D)LTQL公式的可满足性问题简化为具有量子态经典语义的LTML的可满足性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Computational Logic
ACM Transactions on Computational Logic 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI). Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages. The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field. Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.
期刊最新文献
Computationally Hard Problems for Logic Programs under Answer Set Semantics Fundamental Logic is Decidable SAT Modulo Symmetries for Graph Generation and Enumeration Strong Backdoors for Default Logic One or Nothing: Anti-unification over the Simply-Typed Lambda Calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1