{"title":"From Conditional Quantile Regression to Marginal Quantile Estimation with Applications to Missing Data and Causal Inference","authors":"Huijuan Ma, J. Qin, Yong Zhou","doi":"10.1080/07350015.2022.2140158","DOIUrl":null,"url":null,"abstract":"Abstract It is well known that information on the conditional distribution of an outcome variable given covariates can be used to obtain an enhanced estimate of the marginal outcome distribution. This can be done easily by integrating out the marginal covariate distribution from the conditional outcome distribution. However, to date, no analogy has been established between marginal quantile and conditional quantile regression. This article provides a link between them. We propose two novel marginal quantile and marginal mean estimation approaches through conditional quantile regression when some of the outcomes are missing at random. The first of these approaches is free from the need to choose a propensity score. The second is double robust to model misspecification: it is consistent if either the conditional quantile regression model is correctly specified or the missing mechanism of outcome is correctly specified. Consistency and asymptotic normality of the two estimators are established, and the second double robust estimator achieves the semiparametric efficiency bound. Extensive simulation studies are performed to demonstrate the utility of the proposed approaches. An application to causal inference is introduced. For illustration, we apply the proposed methods to a job training program dataset.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"41 1","pages":"1377 - 1390"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2140158","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract It is well known that information on the conditional distribution of an outcome variable given covariates can be used to obtain an enhanced estimate of the marginal outcome distribution. This can be done easily by integrating out the marginal covariate distribution from the conditional outcome distribution. However, to date, no analogy has been established between marginal quantile and conditional quantile regression. This article provides a link between them. We propose two novel marginal quantile and marginal mean estimation approaches through conditional quantile regression when some of the outcomes are missing at random. The first of these approaches is free from the need to choose a propensity score. The second is double robust to model misspecification: it is consistent if either the conditional quantile regression model is correctly specified or the missing mechanism of outcome is correctly specified. Consistency and asymptotic normality of the two estimators are established, and the second double robust estimator achieves the semiparametric efficiency bound. Extensive simulation studies are performed to demonstrate the utility of the proposed approaches. An application to causal inference is introduced. For illustration, we apply the proposed methods to a job training program dataset.
期刊介绍:
The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.