“My ADHD Hellbrain”: A Twitter Data Science Perspective on a Behavioural Disorder

M. Thelwall, Meiko Makita, Amalia Más-Bleda, E. Stuart
{"title":"“My ADHD Hellbrain”: A Twitter Data Science Perspective on a Behavioural Disorder","authors":"M. Thelwall, Meiko Makita, Amalia Más-Bleda, E. Stuart","doi":"10.2478/jdis-2021-0007","DOIUrl":null,"url":null,"abstract":"Abstract Purpose Attention deficit hyperactivity disorder (ADHD) is a common behavioural condition. This article introduces a new data science method, word association thematic analysis, to investigate whether ADHD tweets can give insights into patient concerns and online communication needs. Design/methodology/approach Tweets matching “my ADHD” (n=58,893) and 99 other conditions (n=1,341,442) were gathered and two thematic analyses conducted. Analysis 1: A standard thematic analysis of ADHD-related tweets. Analysis 2: A word association thematic analysis of themes unique to ADHD. Findings The themes that emerged from the two analyses included people ascribing their brains agency to explain and justify their symptoms and using the concept of neurodivergence for a positive self-image. Research limitations This is a single case study and the results may differ for other topics. Practical implications Health professionals should be sensitive to patients’ needs to understand their behaviour, find ways to justify and explain it to others and to be positive about their condition. Originality/value Word association thematic analysis can give new insights into the (self-reported) patient perspective.","PeriodicalId":92237,"journal":{"name":"Journal of data and information science (Warsaw, Poland)","volume":"6 1","pages":"13 - 34"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data and information science (Warsaw, Poland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jdis-2021-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract Purpose Attention deficit hyperactivity disorder (ADHD) is a common behavioural condition. This article introduces a new data science method, word association thematic analysis, to investigate whether ADHD tweets can give insights into patient concerns and online communication needs. Design/methodology/approach Tweets matching “my ADHD” (n=58,893) and 99 other conditions (n=1,341,442) were gathered and two thematic analyses conducted. Analysis 1: A standard thematic analysis of ADHD-related tweets. Analysis 2: A word association thematic analysis of themes unique to ADHD. Findings The themes that emerged from the two analyses included people ascribing their brains agency to explain and justify their symptoms and using the concept of neurodivergence for a positive self-image. Research limitations This is a single case study and the results may differ for other topics. Practical implications Health professionals should be sensitive to patients’ needs to understand their behaviour, find ways to justify and explain it to others and to be positive about their condition. Originality/value Word association thematic analysis can give new insights into the (self-reported) patient perspective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“我的多动症地狱脑”:一种行为障碍的推特数据科学视角
摘要目的注意缺陷多动障碍是一种常见的行为障碍。本文介绍了一种新的数据科学方法,即单词联想主题分析,以调查多动症推文是否能洞察患者的担忧和在线交流需求。收集了与“我的多动症”(n=58893)和99种其他情况(n=1341442)相匹配的设计/方法/方法推文,并进行了两项主题分析。分析1:多动症相关推文的标准主题分析。分析2:多动症特有主题的单词联想主题分析。研究结果这两项分析得出的主题包括人们将自己的大脑机构归因于解释和证明自己的症状,以及使用神经分化的概念来塑造积极的自我形象。研究局限性这是一个单一的案例研究,其他主题的结果可能不同。实际意义卫生专业人员应该对患者的需求保持敏感,了解他们的行为,找到向他人证明和解释的方法,并对他们的病情持积极态度。独创性/价值词关联主题分析可以为(自我报告的)患者视角提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial board publication strategy and acceptance rates in Turkish national journals Multimodal sentiment analysis for social media contents during public emergencies Perspectives from a publishing ethics and research integrity team for required improvements Build neural network models to identify and correct news headlines exaggerating obesity-related scientific findings An author credit allocation method with improved distinguishability and robustness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1