A non-stationary extreme value approach for climate projection ensembles: application to snow loads in the French Alps

E. Le Roux, G. Évin, N. Eckert, J. Blanchet, S. Morin
{"title":"A non-stationary extreme value approach for climate projection ensembles: application to snow loads in the French Alps","authors":"E. Le Roux, G. Évin, N. Eckert, J. Blanchet, S. Morin","doi":"10.5194/esd-2021-79","DOIUrl":null,"url":null,"abstract":"Abstract. Anticipating risks related to climate extremes often relies on the quantification of large return levels (values exceeded with small probability) from climate projection ensembles. Current approaches based on multi-model ensembles (MMEs) usually estimate return levels separately for each chain of the MME. By contrast, using MME obtained with different combinations of general circulation model (GCM) and regional climate model (RCM), our approach estimates return levels together from the past observations and all GCM-RCM pairs, considering both historical and future periods. The proposed methodology seeks to provide estimates of projected return levels accounting for the variability of individual GCM-RCM trajectories, with a robust quantification of uncertainties. To this aim, we introduce a flexible non-stationary generalized extreme value (GEV) distribution that includes i) piecewise linear functions to model the changes in the three GEV parameters ii) adjustment coefficients for the location and scale parameters to adjust the GEV distributions of the GCM-RCM pairs with respect to the GEV distribution of the past observations. Our application focuses on snow load at 1500 m elevation for the 23 massifs of the French Alps, which is of major interest for the structural design of roofs. Annual maxima are available for 20 adjusted GCM-RCM pairs from the EURO-CORDEX experiment, under the scenario RCP8.5. Our results show with a model-as-truth experiment that at least two linear pieces should be considered for the piecewise linear functions. We also show, with a split-sample experiment, that eight massifs should consider adjustment coefficients. These two experiments help us select the GEV parameterizations for each massif. Finally, using these selected parameterizations, we find that the 50-year return level of snow load is projected to decrease in all massifs, by −2.9 kN m−2 (−50 %) on average between 1986–2005 and 2080–2099 at 1500 m elevation and RCP8.5. This paper extends to climate extremes the recent idea to constrain climate projection ensembles using past observations.\n","PeriodicalId":92775,"journal":{"name":"Earth system dynamics : ESD","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth system dynamics : ESD","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/esd-2021-79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract. Anticipating risks related to climate extremes often relies on the quantification of large return levels (values exceeded with small probability) from climate projection ensembles. Current approaches based on multi-model ensembles (MMEs) usually estimate return levels separately for each chain of the MME. By contrast, using MME obtained with different combinations of general circulation model (GCM) and regional climate model (RCM), our approach estimates return levels together from the past observations and all GCM-RCM pairs, considering both historical and future periods. The proposed methodology seeks to provide estimates of projected return levels accounting for the variability of individual GCM-RCM trajectories, with a robust quantification of uncertainties. To this aim, we introduce a flexible non-stationary generalized extreme value (GEV) distribution that includes i) piecewise linear functions to model the changes in the three GEV parameters ii) adjustment coefficients for the location and scale parameters to adjust the GEV distributions of the GCM-RCM pairs with respect to the GEV distribution of the past observations. Our application focuses on snow load at 1500 m elevation for the 23 massifs of the French Alps, which is of major interest for the structural design of roofs. Annual maxima are available for 20 adjusted GCM-RCM pairs from the EURO-CORDEX experiment, under the scenario RCP8.5. Our results show with a model-as-truth experiment that at least two linear pieces should be considered for the piecewise linear functions. We also show, with a split-sample experiment, that eight massifs should consider adjustment coefficients. These two experiments help us select the GEV parameterizations for each massif. Finally, using these selected parameterizations, we find that the 50-year return level of snow load is projected to decrease in all massifs, by −2.9 kN m−2 (−50 %) on average between 1986–2005 and 2080–2099 at 1500 m elevation and RCP8.5. This paper extends to climate extremes the recent idea to constrain climate projection ensembles using past observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气候预测集合的非平稳极值方法:在法国阿尔卑斯山雪荷载上的应用
摘要预测与气候极端相关的风险通常依赖于气候预测集合的大回报水平(以小概率超过的值)的量化。目前基于多模型集合(MME)的方法通常分别估计MME每条链的回报水平。相比之下,我们的方法使用由总环流模型(GCM)和区域气候模型(RCM)的不同组合获得的MME,从过去的观测和所有GCM-RCM对中一起估计回报水平,同时考虑历史和未来时期。所提出的方法旨在提供预测回报水平的估计,考虑到个别GCM-RCM轨迹的可变性,并对不确定性进行稳健的量化。为此,我们引入了一种灵活的非平稳广义极值(GEV)分布,该分布包括i)分段线性函数,以对三个GEV参数的变化建模;ii)位置和尺度参数的调整系数,以相对于过去观测的GEV分布调整GCM-RCM对的GEV分配。我们的应用程序侧重于1500的雪荷载 法国阿尔卑斯山23个山丘的海拔高度为m,这是屋顶结构设计的主要兴趣。在RCP8.5情景下,EURO-CORDEX实验中20对调整后的GCM-RCM对的年最大值可用。我们的结果表明,用模型作为真值实验,分段线性函数至少应该考虑两个线性片段。我们还通过分样本实验表明,八个地块应考虑调整系数。这两个实验帮助我们为每个地块选择GEV参数化。最后,使用这些选定的参数化,我们发现所有地块的50年一遇雪荷载水平预计将减少−2.9 kN m−2(−50 %) 1986年至2005年至2080年至2099年间平均1500 m高程和RCP8.5。本文将最近的想法扩展到了极端气候,即利用过去的观测来约束气候预测集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advancing the estimation of future climate impacts within the United States. Carbon fluxes in spring wheat agroecosystem in India A 20-year satellite-reanalysis-based climatology of extreme precipitation characteristics over the Sinai Peninsula Impacts of anthropogenic water regulation on global riverine dissolved organic carbon transport Working at the limit: a review of thermodynamics and optimality of the Earth system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1