Synthesis and Characterization of New Eco-Friendly Fire-Retardants Based on Soda-Silicate Glass

Q4 Chemical Engineering ASEAN Journal of Chemical Engineering Pub Date : 2020-12-31 DOI:10.22146/ajche.53954
N. Nguyen, V. T. La, T. Le, Suong Thu Huynh
{"title":"Synthesis and Characterization of New Eco-Friendly Fire-Retardants Based on Soda-Silicate Glass","authors":"N. Nguyen, V. T. La, T. Le, Suong Thu Huynh","doi":"10.22146/ajche.53954","DOIUrl":null,"url":null,"abstract":"Fire-retardants (FRs) are additives used to improve the fire-resistance of combustible materials. New generations of FRs must be effective and eco-friendly. Traditional inorganic FRs are non-hazardous but have limited fire-retardancy. Here, we aim to develop an innovative way to enhance the fire-retardancy of inorganic FRs. We synthesized a new type of FRs, called mATH, whose compositions are similar to soda-silicate glass (xNa 2 O.yK 2 O.zSiO 2 .tAl 2 O 3 ). When applied to unsaturated polyester resin, mATH showed a much better performance than traditional aluminum trihydroxide (ATH). The better performance of mATH originated from its new working mechanism. Dehydrated mATH, as a soda-silicate glass, melts under the heat of the fire, which causes heat sink and produces a molten glass. The molten glass forms a charred insulating layer that prevents oxygen from contacting the interior combustible materials. This phenomenon significantly contributes to the fire-retarding behavior of mATH. Our findings open a new method for developing effective eco-friendly FRs.","PeriodicalId":8490,"journal":{"name":"ASEAN Journal of Chemical Engineering","volume":"20 1","pages":"120-129"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajche.53954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Fire-retardants (FRs) are additives used to improve the fire-resistance of combustible materials. New generations of FRs must be effective and eco-friendly. Traditional inorganic FRs are non-hazardous but have limited fire-retardancy. Here, we aim to develop an innovative way to enhance the fire-retardancy of inorganic FRs. We synthesized a new type of FRs, called mATH, whose compositions are similar to soda-silicate glass (xNa 2 O.yK 2 O.zSiO 2 .tAl 2 O 3 ). When applied to unsaturated polyester resin, mATH showed a much better performance than traditional aluminum trihydroxide (ATH). The better performance of mATH originated from its new working mechanism. Dehydrated mATH, as a soda-silicate glass, melts under the heat of the fire, which causes heat sink and produces a molten glass. The molten glass forms a charred insulating layer that prevents oxygen from contacting the interior combustible materials. This phenomenon significantly contributes to the fire-retarding behavior of mATH. Our findings open a new method for developing effective eco-friendly FRs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型生态友好型钠硅酸盐玻璃阻燃剂的合成与表征
阻燃剂(FR)是用于提高可燃材料耐火性的添加剂。新一代FR必须有效且环保。传统的无机阻燃剂是无害的,但具有有限的阻燃性。在这里,我们的目标是开发一种创新的方法来提高无机阻燃剂的阻燃性。我们合成了一种新型的FRs,称为mATH,其组成类似于钠硅酸盐玻璃(xNa2O.yK2O.zSiO2.tAl2O3)。当应用于不饱和聚酯树脂时,mATH表现出比传统的氢氧化铝(ATH)更好的性能。mATH的良好性能源于其新的工作机制。脱水的mATH,作为一种钠硅酸盐玻璃,在火的热量下熔化,这会导致散热器并产生熔融玻璃。熔融玻璃形成一层烧焦的绝缘层,防止氧气与内部可燃材料接触。这种现象显著地促进了mATH的阻燃行为。我们的发现为开发有效的环保FR开辟了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ASEAN Journal of Chemical Engineering
ASEAN Journal of Chemical Engineering Chemical Engineering-Chemical Engineering (all)
CiteScore
1.00
自引率
0.00%
发文量
15
期刊最新文献
Optimization of Defective Coffee Beans Decaffeination Using Palm Oil The Deep Eutectic Solvent in Used Batteries as an Electrolyte Additive for Potential Chitosan Solid Electrolyte Membrane Chemical Properties and Breakthrough Adsorption Study of Activated Carbon Derived from Carbon Precursor from Carbide Industry Extraction of Java Lemongrass (Cymbopogon citratus) Using Microwave-Assisted Hydro Distillation in Pilot Scale: Parametric Study and Modelling Catalytic Decarboxylation of Palm Oil to Green Diesel over Pellets of Ni-CaO/Activated Carbon (AC) Catalyst Under Subcritical Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1