I. Prasanth, D. Ravishankar, M. Manzoor Hussain, Chandra Mouli Badiganti
{"title":"Influence of milling process parameters and significance of tools to improve the surface quality of GFRP composites","authors":"I. Prasanth, D. Ravishankar, M. Manzoor Hussain, Chandra Mouli Badiganti","doi":"10.1080/10910344.2021.1998830","DOIUrl":null,"url":null,"abstract":"Abstract The anisotropic nature of polymer composites presents many challenges for manufacturers to adopt appropriate machining processes. In the present investigation, end milling experiments were conducted on glass fiber reinforced polymer laminates with five varieties of customized cutting tools with different angles of rake and clearance. The performance of the tools was evaluated in terms of their machining force, surface roughness and delamination factor at spindle speeds in the range of 690–2500 rpm. From the observations, relatively high rake and angled clearance tools performed better than the rest of the tools under consideration in terms of delamination and machined surface finishing. The milling operations performed at a spindle speed of 1950 rpm produced better surface quality. Observations from SEM graphs, exposed surface defects due to milling, generated at lower spindle speeds of 690 rpm and at higher spindle speeds of 2500 rpm with the tool signature of low angle rake and angled clearance tools out of all five tools considered for the experiments.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2021.1998830","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The anisotropic nature of polymer composites presents many challenges for manufacturers to adopt appropriate machining processes. In the present investigation, end milling experiments were conducted on glass fiber reinforced polymer laminates with five varieties of customized cutting tools with different angles of rake and clearance. The performance of the tools was evaluated in terms of their machining force, surface roughness and delamination factor at spindle speeds in the range of 690–2500 rpm. From the observations, relatively high rake and angled clearance tools performed better than the rest of the tools under consideration in terms of delamination and machined surface finishing. The milling operations performed at a spindle speed of 1950 rpm produced better surface quality. Observations from SEM graphs, exposed surface defects due to milling, generated at lower spindle speeds of 690 rpm and at higher spindle speeds of 2500 rpm with the tool signature of low angle rake and angled clearance tools out of all five tools considered for the experiments.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining