TopoBERT: Exploring the topology of fine-tuned word representations

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Information Visualization Pub Date : 2023-05-01 DOI:10.1177/14738716231168671
Archit Rathore, Yichu Zhou, Vivek Srikumar, Bei Wang
{"title":"TopoBERT: Exploring the topology of fine-tuned word representations","authors":"Archit Rathore, Yichu Zhou, Vivek Srikumar, Bei Wang","doi":"10.1177/14738716231168671","DOIUrl":null,"url":null,"abstract":"Transformer-based language models such as BERT and its variants have found widespread use in natural language processing (NLP). A common way of using these models is to fine-tune them to improve their performance on a specific task. However, it is currently unclear how the fine-tuning process affects the underlying structure of the word embeddings from these models. We present TopoBERT, a visual analytics system for interactively exploring the fine-tuning process of various transformer-based models – across multiple fine-tuning batch updates, subsequent layers of the model, and different NLP tasks – from a topological perspective. The system uses the mapper algorithm from topological data analysis (TDA) to generate a graph that approximates the shape of a model’s embedding space for an input dataset. TopoBERT enables its users (e.g. experts in NLP and linguistics) to (1) interactively explore the fine-tuning process across different model-task pairs, (2) visualize the shape of embedding spaces at multiple scales and layers, and (3) connect linguistic and contextual information about the input dataset with the topology of the embedding space. Using TopoBERT, we provide various use cases to exemplify its applications in exploring fine-tuned word embeddings. We further demonstrate the utility of TopoBERT, which enables users to generate insights about the fine-tuning process and provides support for empirical validation of these insights.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/14738716231168671","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5

Abstract

Transformer-based language models such as BERT and its variants have found widespread use in natural language processing (NLP). A common way of using these models is to fine-tune them to improve their performance on a specific task. However, it is currently unclear how the fine-tuning process affects the underlying structure of the word embeddings from these models. We present TopoBERT, a visual analytics system for interactively exploring the fine-tuning process of various transformer-based models – across multiple fine-tuning batch updates, subsequent layers of the model, and different NLP tasks – from a topological perspective. The system uses the mapper algorithm from topological data analysis (TDA) to generate a graph that approximates the shape of a model’s embedding space for an input dataset. TopoBERT enables its users (e.g. experts in NLP and linguistics) to (1) interactively explore the fine-tuning process across different model-task pairs, (2) visualize the shape of embedding spaces at multiple scales and layers, and (3) connect linguistic and contextual information about the input dataset with the topology of the embedding space. Using TopoBERT, we provide various use cases to exemplify its applications in exploring fine-tuned word embeddings. We further demonstrate the utility of TopoBERT, which enables users to generate insights about the fine-tuning process and provides support for empirical validation of these insights.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TopoBERT:探索微调单词表示的拓扑结构
基于转换器的语言模型,如BERT及其变体,已在自然语言处理(NLP)中得到广泛使用。使用这些模型的一种常见方法是对它们进行微调,以提高它们在特定任务中的性能。然而,目前尚不清楚微调过程如何影响这些模型中单词嵌入的基本结构。我们介绍了TopoBERT,这是一个视觉分析系统,用于从拓扑角度交互式探索各种基于变压器的模型的微调过程,包括多个微调批更新、模型的后续层和不同的NLP任务。该系统使用拓扑数据分析(TDA)中的映射器算法来生成一个图,该图近似于输入数据集的模型嵌入空间的形状。TopoBERT使其用户(例如NLP和语言学专家)能够(1)在不同的模型任务对之间交互式地探索微调过程,(2)在多个尺度和层上可视化嵌入空间的形状,以及(3)将关于输入数据集的语言和上下文信息与嵌入空间的拓扑连接起来。使用TopoBERT,我们提供了各种用例来举例说明它在探索微调单词嵌入中的应用。我们进一步展示了TopoBERT的实用性,它使用户能够生成关于微调过程的见解,并为这些见解的实证验证提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Visualization
Information Visualization COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
5.40
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications. The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Multidimensional data visualization and synchronization for revealing hidden pandemic information Interactive visual formula composition of multidimensional data classifiers Exploring annotation taxonomy in grouped bar charts: A qualitative classroom study Designing complex network visualisations using the wayfinding map metaphor Graph & Network Visualization and Beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1