A Flower Image Classification Algorithm Based on Saliency Map and PCANet

Yan Yangyang, F. Xiang
{"title":"A Flower Image Classification Algorithm Based on Saliency Map and PCANet","authors":"Yan Yangyang, F. Xiang","doi":"10.17265/1548-7709/2019.01.002","DOIUrl":null,"url":null,"abstract":"Flower Image Classification is a Fine-Grained Classification problem. The main difficulty of Fine-Grained Classification is the large inter-class similarity and the inner-class difference. In this paper, we propose a new algorithm based on Saliency Map and PCANet to overcome the difficulty. This algorithm mainly consists of two parts: flower region selection, flower feature learning. In first part, we combine saliency map with gray-scale map to select flower region. In second part, we use the flower region as input to train the PCANet which is a simple deep learning network for learning flower feature automatically, then a 102-way softmax layer that follow the PCANet achieve classification. Our approach achieves 84.12% accuracy on Oxford 17 Flowers dataset. The results show that a combination of Saliency Map and simple deep learning network PCANet can applies to flower image classification problem.","PeriodicalId":69156,"journal":{"name":"通讯和计算机:中英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"通讯和计算机:中英文版","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.17265/1548-7709/2019.01.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Flower Image Classification is a Fine-Grained Classification problem. The main difficulty of Fine-Grained Classification is the large inter-class similarity and the inner-class difference. In this paper, we propose a new algorithm based on Saliency Map and PCANet to overcome the difficulty. This algorithm mainly consists of two parts: flower region selection, flower feature learning. In first part, we combine saliency map with gray-scale map to select flower region. In second part, we use the flower region as input to train the PCANet which is a simple deep learning network for learning flower feature automatically, then a 102-way softmax layer that follow the PCANet achieve classification. Our approach achieves 84.12% accuracy on Oxford 17 Flowers dataset. The results show that a combination of Saliency Map and simple deep learning network PCANet can applies to flower image classification problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于显著性图和PCANet的花卉图像分类算法
花卉图像分类是一个细粒度分类问题。细粒度分类的主要难点是类间相似性大,类内差异性大。本文提出了一种基于显著性映射和PCANet的新算法来克服这一困难。该算法主要由花的区域选择和花的特征学习两部分组成。在第一部分中,我们结合显著性图和灰度图来选择花区。在第二部分,我们使用花区域作为输入来训练PCANet,这是一个简单的深度学习网络,用于自动学习花的特征,然后在PCANet之后的102路softmax层实现分类。我们的方法在Oxford 17 Flowers数据集上达到了84.12%的准确率。结果表明,将显著性图与简单的深度学习网络PCANet相结合,可以应用于花卉图像分类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
843
期刊最新文献
A Review of 13,470 Head and Neck Injuries from Trampoline Jumping. A Learning Management System as an Assessment Tool: A Case of MUELE Interpretation of Information Security and Data Privacy Protection According to the Data Use During the Epidemic Propagation Path Loss Models at 28 GHz Using K-Nearest Neighbor Algorithm The Method on Deducing MultiplicityMeasurement Equations of Neutron/g
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1