Nicole C. Ramberg-Pihl, Amanda J. Klemmer, Joseph Zydlewski, Stephen M. Coghlan Jr., Hamish S. Greig
{"title":"Smallmouth bass (Micropterus dolomieu) suppress Atlantic salmon (Salmo salar) feeding activity and increase aggressive behaviours at warmer temperatures","authors":"Nicole C. Ramberg-Pihl, Amanda J. Klemmer, Joseph Zydlewski, Stephen M. Coghlan Jr., Hamish S. Greig","doi":"10.1111/eff.12711","DOIUrl":null,"url":null,"abstract":"<p>By 2050, mean temperature in the state of Maine, located in the Northeastern USA, is expected to increase nearly 1°C, which could directly affect native coldwater salmonid behaviour and increase competition with warmwater smallmouth bass. We conducted a microcosm experiment to examine the feeding and agonistic behaviour of endangered juvenile Atlantic Salmon (<i>Salmo salar</i>) at two temperatures (18 and 21°C) in the presence and absence of non-native Smallmouth Bass (<i>Micropterus dolomieu</i>). By visually reviewing footage of fish competition in our tanks, we quantified feeding and agonistic interactions. We predicted salmon would exhibit lower feeding activity than bass at 21°C and antagonistic interactions between the two species would increase with warming. We found salmon feeding activity was reduced by smallmouth bass presence and this effect was stronger at 21°C. We also found smallmouth bass aggression was strongest at 21°C when salmon were present. Lastly, feeding activity and aggression in both species changed with food availability. These findings illustrate the potential for invasive warmwater species to outcompete native salmonids for resources, especially under the warmer conditions predicted by climate change scenarios.</p>","PeriodicalId":11422,"journal":{"name":"Ecology of Freshwater Fish","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology of Freshwater Fish","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eff.12711","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
By 2050, mean temperature in the state of Maine, located in the Northeastern USA, is expected to increase nearly 1°C, which could directly affect native coldwater salmonid behaviour and increase competition with warmwater smallmouth bass. We conducted a microcosm experiment to examine the feeding and agonistic behaviour of endangered juvenile Atlantic Salmon (Salmo salar) at two temperatures (18 and 21°C) in the presence and absence of non-native Smallmouth Bass (Micropterus dolomieu). By visually reviewing footage of fish competition in our tanks, we quantified feeding and agonistic interactions. We predicted salmon would exhibit lower feeding activity than bass at 21°C and antagonistic interactions between the two species would increase with warming. We found salmon feeding activity was reduced by smallmouth bass presence and this effect was stronger at 21°C. We also found smallmouth bass aggression was strongest at 21°C when salmon were present. Lastly, feeding activity and aggression in both species changed with food availability. These findings illustrate the potential for invasive warmwater species to outcompete native salmonids for resources, especially under the warmer conditions predicted by climate change scenarios.
期刊介绍:
Ecology of Freshwater Fish publishes original contributions on all aspects of fish ecology in freshwater environments, including lakes, reservoirs, rivers, and streams. Manuscripts involving ecologically-oriented studies of behavior, conservation, development, genetics, life history, physiology, and host-parasite interactions are welcomed. Studies involving population ecology and community ecology are also of interest, as are evolutionary approaches including studies of population biology, evolutionary ecology, behavioral ecology, and historical ecology. Papers addressing the life stages of anadromous and catadromous species in estuaries and inshore coastal zones are considered if they contribute to the general understanding of freshwater fish ecology. Theoretical and modeling studies are suitable if they generate testable hypotheses, as are those with implications for fisheries. Manuscripts presenting analyses of published data are considered if they produce novel conclusions or syntheses. The journal publishes articles, fresh perspectives, and reviews and, occasionally, the proceedings of conferences and symposia.