{"title":"Homogeneous and anisotropic cosmologies with affine EoS: a dynamical system perspective","authors":"Ashutosh Singh","doi":"10.1140/epjc/s10052-023-11879-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study a class of homogeneous and anisotropic geometries with affine equation of state (EoS) for different physically plausible scenarios of the universe evolution using dynamical system technique. We analyze the locally rotationally symmetric Bianchi I (LRS BI), Bianchi III (LRS BIII) and Bianchi V (LRS BV) geometry for the exhibition of the effects of affine EoS in the model. The model exhibits stable attractor which is also isotropic and thus, it may explain the late-time accelerated expansion of the universe. The model also possess stiff matter-, radiation- and matter-dominated phases prior to the dark energy assisted accelerating phase which are confirmed by the behaviours of effective equation of state and deceleration parameters. We use the statefinder diagnostic which is a geometrical diagnostic to explore model independent features of the cosmological dynamical system. The LRS BI, BIII and BV geometry based dynamical systems exhibit <span>\\(r=1,s=0\\)</span> <span>\\((\\Lambda \\)</span> cold dark matter model) at late-times, which is compatible with the observations. The dynamical system for the Kantowski–Sachs model yields synchronous bounce on the basis of the model parameters. It also yields a late-time attractor which may explain the accelerated expansion of the universe in the model. The qualitative differences between LRS BIII and BV cosmological dynamical systems have also been discussed.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"83 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-023-11879-z.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-023-11879-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 3
Abstract
We study a class of homogeneous and anisotropic geometries with affine equation of state (EoS) for different physically plausible scenarios of the universe evolution using dynamical system technique. We analyze the locally rotationally symmetric Bianchi I (LRS BI), Bianchi III (LRS BIII) and Bianchi V (LRS BV) geometry for the exhibition of the effects of affine EoS in the model. The model exhibits stable attractor which is also isotropic and thus, it may explain the late-time accelerated expansion of the universe. The model also possess stiff matter-, radiation- and matter-dominated phases prior to the dark energy assisted accelerating phase which are confirmed by the behaviours of effective equation of state and deceleration parameters. We use the statefinder diagnostic which is a geometrical diagnostic to explore model independent features of the cosmological dynamical system. The LRS BI, BIII and BV geometry based dynamical systems exhibit \(r=1,s=0\)\((\Lambda \) cold dark matter model) at late-times, which is compatible with the observations. The dynamical system for the Kantowski–Sachs model yields synchronous bounce on the basis of the model parameters. It also yields a late-time attractor which may explain the accelerated expansion of the universe in the model. The qualitative differences between LRS BIII and BV cosmological dynamical systems have also been discussed.
我们利用动力系统技术研究了一类具有仿射状态方程的齐次和各向异性几何,用于研究宇宙演化的不同物理可能情景。我们分析了局部旋转对称的Bianchi I (LRS BI), Bianchi III (LRS BIII)和Bianchi V (LRS BV)几何形状,以展示仿射EoS在模型中的影响。该模型显示出稳定的吸引子,并且各向同性,因此,它可以解释宇宙的后期加速膨胀。有效状态方程和减速参数的行为证实了该模型在暗能量辅助加速相之前还具有物质、辐射和物质主导的硬相。我们使用一种几何诊断方法——状态发现者诊断来探索宇宙动力系统与模型无关的特征。基于LRS BI、BIII和BV几何的动力系统在后期表现出\(r=1,s=0\)\((\Lambda \)冷暗物质模型),这与观测结果是一致的。Kantowski-Sachs模型的动力系统在模型参数的基础上产生同步反弹。它还产生了一个晚时间吸引子,可以解释模型中宇宙的加速膨胀。还讨论了LRS BIII和BV宇宙学动力系统的质的区别。
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.