FORECASTING INDONESIAN INFLATION WITHIN AN INFLATION-TARGETING FRAMEWORK: DO LARGE-SCALE MODELS PAY OFF?

Q2 Economics, Econometrics and Finance Buletin Ekonomi Moneter dan Perbankan Pub Date : 2019-12-31 DOI:10.21098/bemp.v22i4.1235
Solikin M. Juhro, B. N. Iyke
{"title":"FORECASTING INDONESIAN INFLATION WITHIN AN INFLATION-TARGETING FRAMEWORK: DO LARGE-SCALE MODELS PAY OFF?","authors":"Solikin M. Juhro, B. N. Iyke","doi":"10.21098/bemp.v22i4.1235","DOIUrl":null,"url":null,"abstract":"We examine the usefulness of large-scale inflation forecasting models in Indonesiawithin an inflation-targeting framework. Using a dynamic model averaging approachto address three issues the policymaker faces when forecasting inflation, namely,parameter, predictor, and model uncertainties, we show that large-scale modelshave significant payoffs. Our in-sample forecasts suggest that 60% of 15 exogenouspredictors significantly forecast inflation, given a posterior inclusion probability cut-offof approximately 50%. We show that nearly 87% of the predictors can forecast inflationif we lower the cut-off to approximately 40%. Our out-of-sample forecasts suggest thatlarge-scale inflation forecasting models have substantial forecasting power relative tosimple models of inflation persistence at longer horizons.","PeriodicalId":36737,"journal":{"name":"Buletin Ekonomi Moneter dan Perbankan","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Buletin Ekonomi Moneter dan Perbankan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21098/bemp.v22i4.1235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 8

Abstract

We examine the usefulness of large-scale inflation forecasting models in Indonesiawithin an inflation-targeting framework. Using a dynamic model averaging approachto address three issues the policymaker faces when forecasting inflation, namely,parameter, predictor, and model uncertainties, we show that large-scale modelshave significant payoffs. Our in-sample forecasts suggest that 60% of 15 exogenouspredictors significantly forecast inflation, given a posterior inclusion probability cut-offof approximately 50%. We show that nearly 87% of the predictors can forecast inflationif we lower the cut-off to approximately 40%. Our out-of-sample forecasts suggest thatlarge-scale inflation forecasting models have substantial forecasting power relative tosimple models of inflation persistence at longer horizons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在通胀目标框架内预测印尼通胀:大规模模型有回报吗?
我们在通胀目标框架内研究了印尼大规模通胀预测模型的有用性。使用动态模型平均方法来解决决策者在预测通货膨胀时面临的三个问题,即参数、预测因子和模型不确定性,我们表明大规模模型会带来显著的收益。我们的样本内预测表明,在后验纳入概率降低约50%的情况下,15个外基因预测因子中有60%显著预测通货膨胀。我们表明,如果我们将截止值降低到大约40%,那么近87%的预测因子可以预测通货膨胀。我们的样本外预测表明,相对于长期通胀持续性的简单模型,大规模通胀预测模型具有相当大的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Buletin Ekonomi Moneter dan Perbankan
Buletin Ekonomi Moneter dan Perbankan Economics, Econometrics and Finance-Finance
CiteScore
2.20
自引率
0.00%
发文量
1
审稿时长
5 weeks
期刊最新文献
AN ESTIMATED OPEN-ECONOMY DSGE MODEL FOR THE EVALUATION OF CENTRAL BANK POLICY MIX Optimizing Library Donation Book Display: SMART and WASPAS Comparison RFM Analysis for Customer Lifetime Value with PARETO/NBD Model in Online Retail Dataset Analysis Of Change Rate And Interest Rate Changes To Indonesia’s Trade Balance How Global Value Chains Affect Economic Output and Unemployment: An Empirical Evidence from ASEAN Countries, 1999-2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1