Flow Analysis of a Micropolar Nanofluid Between Two Parallel Disks in the Presence of a Magnetic Field

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2023-06-01 DOI:10.1166/jon.2023.2021
Reshu Gupta, D. Agrawal
{"title":"Flow Analysis of a Micropolar Nanofluid Between Two Parallel Disks in the Presence of a Magnetic Field","authors":"Reshu Gupta, D. Agrawal","doi":"10.1166/jon.2023.2021","DOIUrl":null,"url":null,"abstract":"The present article addresses the steady and laminar magnetohydrodynamics (MHD) flow of a micropolar nanofluid between two porous disks. The fluid is flowing uniformly in the inward and upward directions from both disks. The microrotation of the nanoparticles acts an important role\n in the flow regime. To show its significance, a comparative study of the analytical results and numerical results is presented. Titanium dioxide is chosen as nanoparticles in the water-based fluid. An appropriate transformation is used for transforming PDEs into ODEs. These nonlinear ODEs\n are computed by the differential transform method (DTM). The consequences of the Reynolds number, material parameter, and magnetic parameter on the radial velocity, axial velocity, and microrotation profile are graphically presented and discussed. The results calculated by DTM and the results\n calculated numerically are compared and tabulated. This comparison shows the accuracy and validity of DTM. The coefficient of skin friction is also tabulated and compared with the numerical result. At the end of this study, it is concluded that the behavior of the radial and the axial velocities\n and the microrotation profile are almost the same in the case of the Reynolds number and the magnetic field parameters.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present article addresses the steady and laminar magnetohydrodynamics (MHD) flow of a micropolar nanofluid between two porous disks. The fluid is flowing uniformly in the inward and upward directions from both disks. The microrotation of the nanoparticles acts an important role in the flow regime. To show its significance, a comparative study of the analytical results and numerical results is presented. Titanium dioxide is chosen as nanoparticles in the water-based fluid. An appropriate transformation is used for transforming PDEs into ODEs. These nonlinear ODEs are computed by the differential transform method (DTM). The consequences of the Reynolds number, material parameter, and magnetic parameter on the radial velocity, axial velocity, and microrotation profile are graphically presented and discussed. The results calculated by DTM and the results calculated numerically are compared and tabulated. This comparison shows the accuracy and validity of DTM. The coefficient of skin friction is also tabulated and compared with the numerical result. At the end of this study, it is concluded that the behavior of the radial and the axial velocities and the microrotation profile are almost the same in the case of the Reynolds number and the magnetic field parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁场作用下两个平行圆盘间微纳流体的流动分析
本文讨论了微极性纳米流体在两个多孔圆盘之间的稳定层流磁流体力学(MHD)流动。流体从两个圆盘向内和向上均匀流动。纳米颗粒的微旋转在流动状态中起着重要作用。为了表明其意义,对分析结果和数值结果进行了比较研究。二氧化钛被选为水基流体中的纳米颗粒。适当的变换用于将偏微分方程变换为常微分方程。这些非线性ODE是通过微分变换方法(DTM)计算的。雷诺数、材料参数和磁参数对径向速度、轴向速度和微旋转剖面的影响用图形表示并讨论。将DTM计算的结果与数值计算的结果进行比较并制成表格。这一比较表明了DTM的准确性和有效性。表中还列出了表面摩擦系数,并与数值结果进行了比较。在本研究的最后,得出结论,在雷诺数和磁场参数的情况下,径向和轴向速度的行为以及微旋转轮廓几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink Unsteady Natural Convection of Dusty Hybrid Nanofluid Flow Between a Wavy and Circular Cylinder with Heat Generation Synergistic Heat Transfer in Enclosures: A Hybrid Nanofluids Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1