{"title":"FOLD-RM: A Scalable, Efficient, and Explainable Inductive Learning Algorithm for Multi-Category Classification of Mixed Data","authors":"Huaduo Wang, Farhad Shakerin, Gopal Gupta","doi":"10.1017/S1471068422000205","DOIUrl":null,"url":null,"abstract":"Abstract FOLD-RM is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) answer set programming (ASP) rule set for multi-category classification tasks while maintaining efficiency and scalability. The FOLD-RM algorithm is competitive in performance with the widely used, state-of-the-art algorithms such as XGBoost and multi-layer perceptrons, however, unlike these algorithms, the FOLD-RM algorithm produces an explainable model. FOLD-RM outperforms XGBoost on some datasets, particularly large ones. FOLD-RM also provides human-friendly explanations for predictions.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"22 1","pages":"658 - 677"},"PeriodicalIF":1.4000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S1471068422000205","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract FOLD-RM is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) answer set programming (ASP) rule set for multi-category classification tasks while maintaining efficiency and scalability. The FOLD-RM algorithm is competitive in performance with the widely used, state-of-the-art algorithms such as XGBoost and multi-layer perceptrons, however, unlike these algorithms, the FOLD-RM algorithm produces an explainable model. FOLD-RM outperforms XGBoost on some datasets, particularly large ones. FOLD-RM also provides human-friendly explanations for predictions.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.