O. Hamdaoui, S. Merouani, Hadjer C. Benmahmoud, M. Ait Idir, Hamza Ferkous, Abdulaziz Alghyamah
{"title":"Ultrasound/Chlorine: A Novel Synergistic Sono-Hybrid Process for Allura Red AC Degradation","authors":"O. Hamdaoui, S. Merouani, Hadjer C. Benmahmoud, M. Ait Idir, Hamza Ferkous, Abdulaziz Alghyamah","doi":"10.3390/catal12101171","DOIUrl":null,"url":null,"abstract":"Herein, we present an original report on chlorine activation by ultrasound (US: 600 kHz, 120 W) for intensifying the sonochemical treatment of hazardous organic materials. The coupling of US/chlorine produced synergy via the involvement of reactive chlorine species (RCSs: Cl•, ClO• and Cl2•−), resulting from the sono-activation of chlorine. The degradation of Allura Red AC (ARAC) textile dye, as a contaminant model, was drastically improved by the US/chlorine process as compared to the separated techniques. A synergy index of 1.74 was obtained by the US/chlorine process for the degradation of ARAC (C0 = 5 mg·L−1) at pH 5.5 and [chlorine]0 = 250 mM. The synergistic index increased by up to 2.2 when chlorine concentration was 300 µM. Additionally, the synergetic effect was only obtained at pH 4–6, where HOCl is the sole chlorine species. Additionally, the effect of combining US and chlorine for ARAC degradation was additive for the argon atmosphere, synergistic for air and negative for N2. An air atmosphere could provide the best synergy as it generates a relatively moderate concentration of reactive species as compared to argon, which marginalizes radical–radical reactions compared to radical–organic ones. Finally, the US/chlorine process was more synergistic for low pollutant concentrations (C0 ≤ 10 mg·L−1); the coupling effect was additive for moderate concentrations (C0 ~ 20–30 mg·L−1) and negative for higher C0 (> 30 mg·L−1). Consequently, the US/chlorine process was efficiently operable under typical water treatment conditions, although complete by-product analysis and toxicity assessment may still be necessary to establish process viability.","PeriodicalId":9794,"journal":{"name":"Catalysts","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysts","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal12101171","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Herein, we present an original report on chlorine activation by ultrasound (US: 600 kHz, 120 W) for intensifying the sonochemical treatment of hazardous organic materials. The coupling of US/chlorine produced synergy via the involvement of reactive chlorine species (RCSs: Cl•, ClO• and Cl2•−), resulting from the sono-activation of chlorine. The degradation of Allura Red AC (ARAC) textile dye, as a contaminant model, was drastically improved by the US/chlorine process as compared to the separated techniques. A synergy index of 1.74 was obtained by the US/chlorine process for the degradation of ARAC (C0 = 5 mg·L−1) at pH 5.5 and [chlorine]0 = 250 mM. The synergistic index increased by up to 2.2 when chlorine concentration was 300 µM. Additionally, the synergetic effect was only obtained at pH 4–6, where HOCl is the sole chlorine species. Additionally, the effect of combining US and chlorine for ARAC degradation was additive for the argon atmosphere, synergistic for air and negative for N2. An air atmosphere could provide the best synergy as it generates a relatively moderate concentration of reactive species as compared to argon, which marginalizes radical–radical reactions compared to radical–organic ones. Finally, the US/chlorine process was more synergistic for low pollutant concentrations (C0 ≤ 10 mg·L−1); the coupling effect was additive for moderate concentrations (C0 ~ 20–30 mg·L−1) and negative for higher C0 (> 30 mg·L−1). Consequently, the US/chlorine process was efficiently operable under typical water treatment conditions, although complete by-product analysis and toxicity assessment may still be necessary to establish process viability.
期刊介绍:
Catalysts (ISSN 2073-4344) is an international open access journal of catalysts and catalyzed reactions. Catalysts publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.