Discovering Potential Illegal Construction Within Building Roofs from UAV Images Using Semantic Segmentation and Object-Based Change Detection

IF 1 4区 地球科学 Q4 GEOGRAPHY, PHYSICAL Photogrammetric Engineering and Remote Sensing Pub Date : 2021-04-01 DOI:10.14358/PERS.87.4.263
Yang Liu, Yujie Sun, Shikang Tao, Min Wang, Qian Shen, Jiru Huang
{"title":"Discovering Potential Illegal Construction Within Building Roofs from UAV Images Using Semantic Segmentation and Object-Based Change Detection","authors":"Yang Liu, Yujie Sun, Shikang Tao, Min Wang, Qian Shen, Jiru Huang","doi":"10.14358/PERS.87.4.263","DOIUrl":null,"url":null,"abstract":"A novel potential illegal construction (PIC) detection method by bitemporal unmanned aerial vehicle (UAV ) image comparison (change detection) within building roof areas is proposed. In this method, roofs are first extracted from UAV images using a depth-channel improved UNet model.\n A two-step change detection scheme is then implemented for PIC detection. In the change detection stage, roofs with appearance, disappearance, and shape changes are first extracted by morphological analysis. Subroof primitives are then obtained by roof-constrained image segmentation within\n the remaining roof areas, and object-based iteratively reweighted multivariate alteration detection (IR-MAD ) is implemented to extract the small PICs from the subroof primitives. The proposed method organically combines deep learning and object-based image analysis, which can identify entire\n roof changes and locate small object changes within the roofs. Experiments show that the proposed method has better accuracy compared with the other counterparts, including the original IR-MAD, change vector analysis, and principal components analysis-K-means.","PeriodicalId":49702,"journal":{"name":"Photogrammetric Engineering and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering and Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.14358/PERS.87.4.263","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel potential illegal construction (PIC) detection method by bitemporal unmanned aerial vehicle (UAV ) image comparison (change detection) within building roof areas is proposed. In this method, roofs are first extracted from UAV images using a depth-channel improved UNet model. A two-step change detection scheme is then implemented for PIC detection. In the change detection stage, roofs with appearance, disappearance, and shape changes are first extracted by morphological analysis. Subroof primitives are then obtained by roof-constrained image segmentation within the remaining roof areas, and object-based iteratively reweighted multivariate alteration detection (IR-MAD ) is implemented to extract the small PICs from the subroof primitives. The proposed method organically combines deep learning and object-based image analysis, which can identify entire roof changes and locate small object changes within the roofs. Experiments show that the proposed method has better accuracy compared with the other counterparts, including the original IR-MAD, change vector analysis, and principal components analysis-K-means.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用语义分割和基于对象的变化检测从无人机图像中发现屋顶内潜在的非法建筑
提出了一种新的基于双时无人机(UAV)图像比较(变化检测)的屋顶区域潜在违法建筑(PIC)检测方法。在该方法中,首先使用深度通道改进的UNet模型从无人机图像中提取屋顶。然后实现了用于PIC检测的两步变化检测方案。在变化检测阶段,首先通过形态学分析提取出现、消失和形状变化的屋顶。然后,通过在剩余的屋顶区域内进行屋顶约束的图像分割来获得子屋顶基元,并实现基于对象的迭代重加权多变量变化检测(IR-MAD),以从子屋顶基元中提取小的PIC。所提出的方法将深度学习和基于对象的图像分析有机地结合在一起,可以识别整个屋顶的变化,并定位屋顶内的小对象变化。实验表明,与其他方法相比,该方法具有更好的精度,包括原始的IR-MAD、变化向量分析和主成分分析-K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Photogrammetric Engineering and Remote Sensing
Photogrammetric Engineering and Remote Sensing 地学-成像科学与照相技术
CiteScore
1.70
自引率
15.40%
发文量
89
审稿时长
9 months
期刊介绍: Photogrammetric Engineering & Remote Sensing commonly referred to as PE&RS, is the official journal of imaging and geospatial information science and technology. Included in the journal on a regular basis are highlight articles such as the popular columns “Grids & Datums” and “Mapping Matters” and peer reviewed technical papers. We publish thousands of documents, reports, codes, and informational articles in and about the industries relating to Geospatial Sciences, Remote Sensing, Photogrammetry and other imaging sciences.
期刊最新文献
A Powerful Correspondence Selection Method for Point Cloud Registration Based on Machine Learning Identification of Critical Urban Clusters for Placating Urban Heat Island Effects over Fast-Growing Tropical City Regions: Estimating the Contribution of Different City Sizes in Escalating UHI Intensity A Novel Object Detection Method for Solid Waste Incorporating a Weighted Deformable Convolution GIS Tips & Tricks ‐ Relationships Count when Mapping? An Integrated Approach for Wildfire Photography Telemetry using WRF Numerical Forecast Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1