SAS PROC IRT and the R Mirt Package: A Comparison of Model Parameter Estimation for Multidimensional IRT Models

Psych Pub Date : 2023-05-15 DOI:10.3390/psych5020028
Ki Cole, Insu Paek
{"title":"SAS PROC IRT and the R Mirt Package: A Comparison of Model Parameter Estimation for Multidimensional IRT Models","authors":"Ki Cole, Insu Paek","doi":"10.3390/psych5020028","DOIUrl":null,"url":null,"abstract":"This study investigates the performance of estimation methods for multidimensional IRT models with dichotomous and polytomous data in two well-known IRT programs: SAS PROC IRT and the mirt package in R. A simulation study was used to compare performance on a simple structure Rasch model, complex structure 2PL model, and bifactor graded response model. Under RMSE and bias criteria regarding item parameter recovery, PROC IRT and mirt showed nearly identical performance in the simple structure condition. When a complex structure was used, mirt performed better in terms of the recovery of intercept parameters, while the recovery of slope parameters depended on the program and the sample sizes: PROC IRT tended to be better with small samples (N=500) according to RMSE, and mirt was better for larger samples (N=1000 and 2500) according to RMSE and bias for the slope parameter recovery. When a bifactor structure was used, mirt was preferred in all cases; differences lessened as sample size increased.","PeriodicalId":93139,"journal":{"name":"Psych","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psych","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/psych5020028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This study investigates the performance of estimation methods for multidimensional IRT models with dichotomous and polytomous data in two well-known IRT programs: SAS PROC IRT and the mirt package in R. A simulation study was used to compare performance on a simple structure Rasch model, complex structure 2PL model, and bifactor graded response model. Under RMSE and bias criteria regarding item parameter recovery, PROC IRT and mirt showed nearly identical performance in the simple structure condition. When a complex structure was used, mirt performed better in terms of the recovery of intercept parameters, while the recovery of slope parameters depended on the program and the sample sizes: PROC IRT tended to be better with small samples (N=500) according to RMSE, and mirt was better for larger samples (N=1000 and 2500) according to RMSE and bias for the slope parameter recovery. When a bifactor structure was used, mirt was preferred in all cases; differences lessened as sample size increased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SAS PROC IRT和R Mirt软件包:多维IRT模型参数估计的比较
本文研究了SAS PROC IRT和R. mirt两种知名IRT程序中具有二分和多分数据的多维IRT模型的估计方法的性能,并通过仿真研究比较了简单结构Rasch模型、复杂结构2PL模型和双因素分级响应模型的性能。在项目参数恢复的均方根误差和偏差标准下,PROC IRT和mirt在简单结构条件下表现出几乎相同的性能。当使用复杂结构时,mirt在截距参数的恢复方面表现较好,而斜率参数的恢复取决于程序和样本量:根据RMSE, PROC IRT在小样本(N=500)中表现较好,根据RMSE和偏差,mirt在大样本(N=1000和2500)中表现较好。当使用双因素结构时,在所有情况下都首选mirt;差异随着样本量的增加而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Robust Indicator Mean-Based Method for Estimating Generalizability Theory Absolute Error and Related Dependability Indices within Structural Equation Modeling Frameworks Qualitative Pilot Interventions for the Enhancement of Mental Health Support in Doctoral Students Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis Walking Forward Together—The Next Step: Indigenous Youth Mental Health and the Climate Crisis The IADC Grief Questionnaire as a Brief Measure for Complicated Grief in Clinical Practice and Research: A Preliminary Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1