Kaory Barrientos Urdinola, Paula Andrea Marín Muñoz, Pedronel Araque Marín, Marisol Jaramillo Grajales
{"title":"In-Silico Prediction on the MSAMS-Assisted Immobilization of Bovine Serum Albumin on 10MHz Piezoelectric Immunosensors","authors":"Kaory Barrientos Urdinola, Paula Andrea Marín Muñoz, Pedronel Araque Marín, Marisol Jaramillo Grajales","doi":"10.1142/S2251237319500011","DOIUrl":null,"url":null,"abstract":"The biological sensing interface on the active area of a piezo transducer is responsible for the sensitivity, specificity, reusability, and reproducibility of these devices. Among the approaches used to functionalize piezo transducers, mixed self-assembled monolayers (MSAMs) are one of the most successful, given that they allow the obtaining of semi-crystalline molecular arrays and the arrangement of a bioreceptor on the surface. But, to deploy MSAMs on a substrate effectively, one must optimize and characterize the structural ratio between them and the bioreceptor. In this paper, we developed a molecular model of the interaction between Bovine Serum Albumin (BSA) and MSAMs-functionalized gold substrates. First, we evaluated the conditions for the functionalization of the substrates and found that a 50:1 16-mercaptohexadecaonic acid (MHDA) to 11 mercapto-1-undecanol (MUA) ratio produced the best features on the surface. We also evaluated the specific conditions to immobilize BSA on MSAMs (using the afore-established ratio) via Atomic Force Microscopy (AFM), and then on a 10[Formula: see text]MHz quartz crystal microbalance (QCM), and with the data obtained we concluded that a structural ratio of 0.005 (MSAM/BSA) is obtained when 1[Formula: see text][Formula: see text]M MHDA and 200[Formula: see text][Formula: see text]g/mL BSA were used, provided the most suitable conditions for the functionalization of a piezo transducer.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2019-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S2251237319500011","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular and Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2251237319500011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
The biological sensing interface on the active area of a piezo transducer is responsible for the sensitivity, specificity, reusability, and reproducibility of these devices. Among the approaches used to functionalize piezo transducers, mixed self-assembled monolayers (MSAMs) are one of the most successful, given that they allow the obtaining of semi-crystalline molecular arrays and the arrangement of a bioreceptor on the surface. But, to deploy MSAMs on a substrate effectively, one must optimize and characterize the structural ratio between them and the bioreceptor. In this paper, we developed a molecular model of the interaction between Bovine Serum Albumin (BSA) and MSAMs-functionalized gold substrates. First, we evaluated the conditions for the functionalization of the substrates and found that a 50:1 16-mercaptohexadecaonic acid (MHDA) to 11 mercapto-1-undecanol (MUA) ratio produced the best features on the surface. We also evaluated the specific conditions to immobilize BSA on MSAMs (using the afore-established ratio) via Atomic Force Microscopy (AFM), and then on a 10[Formula: see text]MHz quartz crystal microbalance (QCM), and with the data obtained we concluded that a structural ratio of 0.005 (MSAM/BSA) is obtained when 1[Formula: see text][Formula: see text]M MHDA and 200[Formula: see text][Formula: see text]g/mL BSA were used, provided the most suitable conditions for the functionalization of a piezo transducer.