Phishing uniform resource locator detection using machine learning: A step towards secure system

IF 1.5 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Security and Privacy Pub Date : 2023-03-25 DOI:10.1002/spy2.311
Shilpa Mahajan
{"title":"Phishing uniform resource locator detection using machine learning: A step towards secure system","authors":"Shilpa Mahajan","doi":"10.1002/spy2.311","DOIUrl":null,"url":null,"abstract":"The advancement in technology has led to increase in cyber‐attacks. Hackers have become more skilled at finding the loopholes in the system and can penetrate easily on to host network. The rate of cybercrimes is increasing exponentially with the growth of digital era. Phishing is considered as one of the top cybercrimes that has impacted the society at large. As per Kaspersky reports 2021, around 22% attacks were phishing attacks. This paper explores methods for detecting phishing uniform resource locator (URLs) by analyzing various features using Machine Learning techniques. Various data mining algorithms are used to learn data patterns that can identify and differentiate between benign and phishing websites using phishing website data set. The best results are shown by an XGBoost Model that provides more than 90% accuracy on the balanced class dataset.","PeriodicalId":29939,"journal":{"name":"Security and Privacy","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/spy2.311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement in technology has led to increase in cyber‐attacks. Hackers have become more skilled at finding the loopholes in the system and can penetrate easily on to host network. The rate of cybercrimes is increasing exponentially with the growth of digital era. Phishing is considered as one of the top cybercrimes that has impacted the society at large. As per Kaspersky reports 2021, around 22% attacks were phishing attacks. This paper explores methods for detecting phishing uniform resource locator (URLs) by analyzing various features using Machine Learning techniques. Various data mining algorithms are used to learn data patterns that can identify and differentiate between benign and phishing websites using phishing website data set. The best results are shown by an XGBoost Model that provides more than 90% accuracy on the balanced class dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习的网络钓鱼统一资源定位器检测:迈向安全系统的一步
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
5.30%
发文量
80
期刊最新文献
Physically secure and privacy‐preserving blockchain enabled authentication scheme for internet of drones A new authentication scheme for dynamic charging system of electric vehicles in fog environment Enhancing android application security: A novel approach using DroidXGB for malware detection based on permission analysis Designing access control security protocol for Industry 4.0 using Blockchain‐as‐a‐Service An efficient lightweight authentication scheme for dew‐assisted IoT networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1