A Multi-Armed Bayesian Ordinal Outcome Utility-Based Sequential Trial with a Pairwise Null Clustering Prior

IF 4.9 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Bayesian Analysis Pub Date : 2022-01-01 DOI:10.1214/22-ba1316
A. Chapple, Yussef Bennani, Meredith Clement
{"title":"A Multi-Armed Bayesian Ordinal Outcome Utility-Based Sequential Trial with a Pairwise Null Clustering Prior","authors":"A. Chapple, Yussef Bennani, Meredith Clement","doi":"10.1214/22-ba1316","DOIUrl":null,"url":null,"abstract":". A multi-armed trial based on ordinal outcomes is proposed that lever-ages a flexible non-proportional odds cumulative logit model and numerical utility scores for each outcome to determine treatment optimality. This trial design uses a Bayesian clustering prior on the treatment effects that encourages the pairwise null hypothesis of no differences between treatments. A group sequential design is proposed to determine which treatments are clinically different with an adaptive decision boundary that becomes more aggressive as the sample size or clinical significance grows, or the number of active treatments decreases. A simulation study is conducted for 3 and 5 treatment arms, which shows that the design has superior operating characteristics (family wise error rate, generalized power, average sample size) compared to utility designs that do not allow clustering, a frequentist proportional odds model, or a permutation test based on empirical mean utilities.","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ba1316","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

. A multi-armed trial based on ordinal outcomes is proposed that lever-ages a flexible non-proportional odds cumulative logit model and numerical utility scores for each outcome to determine treatment optimality. This trial design uses a Bayesian clustering prior on the treatment effects that encourages the pairwise null hypothesis of no differences between treatments. A group sequential design is proposed to determine which treatments are clinically different with an adaptive decision boundary that becomes more aggressive as the sample size or clinical significance grows, or the number of active treatments decreases. A simulation study is conducted for 3 and 5 treatment arms, which shows that the design has superior operating characteristics (family wise error rate, generalized power, average sample size) compared to utility designs that do not allow clustering, a frequentist proportional odds model, or a permutation test based on empirical mean utilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有成对零聚类先验的多臂贝叶斯有序结果效用序贯试验
. 提出了一项基于有序结果的多臂试验,该试验利用灵活的非比例odds累积logit模型和每个结果的数值效用评分来确定治疗的最优性。该试验设计在治疗效果上使用贝叶斯聚类先验,鼓励治疗之间无差异的两两零假设。提出了一种组序列设计来确定哪些治疗在临床上是不同的,随着样本量或临床意义的增加或积极治疗数量的减少,适应性决策边界变得更加激进。对3个和5个治疗组进行了模拟研究,结果表明,与不允许聚类、频率比例赔率模型或基于经验平均效用的排列检验的实用设计相比,该设计具有优越的操作特性(家庭明智错误率、广义功率、平均样本量)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bayesian Analysis
Bayesian Analysis 数学-数学跨学科应用
CiteScore
6.50
自引率
13.60%
发文量
59
审稿时长
>12 weeks
期刊介绍: Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining. Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.
期刊最新文献
Reproducible Model Selection Using Bagged Posteriors. Bayesian ex Post Evaluation of Recursive Multi-Step-Ahead Density Prediction Objective Bayesian Model Selection for Spatial Hierarchical Models with Intrinsic Conditional Autoregressive Priors Laplace Power-Expected-Posterior Priors for Logistic Regression Dynamic Graphical Models with Variable Selection for Effective Connectivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1