Detecting Interviewer Fraud Using Multilevel Models

IF 1.6 4区 数学 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of Survey Statistics and Methodology Pub Date : 2023-01-02 DOI:10.1093/jssam/smac036
Lukas Olbrich, Yuliya Kosyakova, J. Sakshaug, Silvia Schwanhäuser
{"title":"Detecting Interviewer Fraud Using Multilevel Models","authors":"Lukas Olbrich, Yuliya Kosyakova, J. Sakshaug, Silvia Schwanhäuser","doi":"10.1093/jssam/smac036","DOIUrl":null,"url":null,"abstract":"\n Interviewer falsification, such as the complete or partial fabrication of interview data, has been shown to substantially affect the results of survey data. In this study, we apply a method to identify falsifying face-to-face interviewers based on the development of their behavior over the survey field period. We postulate four potential falsifier types: steady low-effort falsifiers, steady high-effort falsifiers, learning falsifiers, and sudden falsifiers. Using large-scale survey data from Germany with verified falsifications, we apply multilevel models with interviewer effects on the intercept, scale, and slope of the interview sequence to test whether falsifiers can be detected based on their dynamic behavior. In addition to identifying a rather high-effort falsifier previously detected by the survey organization, the model flagged two additional suspicious interviewers exhibiting learning behavior, who were subsequently classified as deviant by the survey organization. We additionally apply the analysis approach to publicly available cross-national survey data and find multiple interviewers who show behavior consistent with the postulated falsifier types.","PeriodicalId":17146,"journal":{"name":"Journal of Survey Statistics and Methodology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Survey Statistics and Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jssam/smac036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Interviewer falsification, such as the complete or partial fabrication of interview data, has been shown to substantially affect the results of survey data. In this study, we apply a method to identify falsifying face-to-face interviewers based on the development of their behavior over the survey field period. We postulate four potential falsifier types: steady low-effort falsifiers, steady high-effort falsifiers, learning falsifiers, and sudden falsifiers. Using large-scale survey data from Germany with verified falsifications, we apply multilevel models with interviewer effects on the intercept, scale, and slope of the interview sequence to test whether falsifiers can be detected based on their dynamic behavior. In addition to identifying a rather high-effort falsifier previously detected by the survey organization, the model flagged two additional suspicious interviewers exhibiting learning behavior, who were subsequently classified as deviant by the survey organization. We additionally apply the analysis approach to publicly available cross-national survey data and find multiple interviewers who show behavior consistent with the postulated falsifier types.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多层次模型检测面试官欺诈
采访者造假,如完全或部分伪造采访数据,已被证明会对调查数据的结果产生重大影响。在这项研究中,我们应用了一种方法,根据他们在调查期间的行为发展来识别伪造的面对面采访者。我们假设了四种潜在的证伪者类型:稳定的低努力证伪者、稳定的高努力证伪器、学习证伪器和突然证伪器。利用来自德国的大规模调查数据,我们对采访序列的截距、规模和斜率应用了具有采访者效应的多层次模型,以测试是否可以根据造假者的动态行为来检测造假者。除了识别调查组织之前检测到的一个相当努力的造假者外,该模型还标记了另外两名表现出学习行为的可疑受访者,他们随后被调查组织归类为离经叛道者。此外,我们将分析方法应用于公开的跨国调查数据,并发现多名受访者的行为与假设的证伪者类型一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
9.50%
发文量
40
期刊介绍: The Journal of Survey Statistics and Methodology, sponsored by AAPOR and the American Statistical Association, began publishing in 2013. Its objective is to publish cutting edge scholarly articles on statistical and methodological issues for sample surveys, censuses, administrative record systems, and other related data. It aims to be the flagship journal for research on survey statistics and methodology. Topics of interest include survey sample design, statistical inference, nonresponse, measurement error, the effects of modes of data collection, paradata and responsive survey design, combining data from multiple sources, record linkage, disclosure limitation, and other issues in survey statistics and methodology. The journal publishes both theoretical and applied papers, provided the theory is motivated by an important applied problem and the applied papers report on research that contributes generalizable knowledge to the field. Review papers are also welcomed. Papers on a broad range of surveys are encouraged, including (but not limited to) surveys concerning business, economics, marketing research, social science, environment, epidemiology, biostatistics and official statistics. The journal has three sections. The Survey Statistics section presents papers on innovative sampling procedures, imputation, weighting, measures of uncertainty, small area inference, new methods of analysis, and other statistical issues related to surveys. The Survey Methodology section presents papers that focus on methodological research, including methodological experiments, methods of data collection and use of paradata. The Applications section contains papers involving innovative applications of methods and providing practical contributions and guidance, and/or significant new findings.
期刊最新文献
Small Area Poverty Estimation under Heteroskedasticity Investigating Respondent Attention to Experimental Text Lengths A Catch-22—the Test–Retest Method of Reliability Estimation Poverty Mapping Under Area-Level Random Regression Coefficient Poisson Models Peekaboo! The Effect of Different Visible Cash Display and Amount Options During Mail Contact When Recruiting to a Probability-Based Panel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1